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Abstract

Identifying multi-view outliers is challenging because of the
complex data distributions across different views. Existing
methods cope this problem by exploiting pairwise constraints
across different views to obtain new feature representations,
based on which certain outlier score measurements are de-
fined. Due to the use of pairwise constraint, it is complicated
and time-consuming for existing methods to detect outliers
from three or more views. In this paper, we propose a novel
method capable of detecting outliers from any number of data
views. Our method first learns latent discriminant representa-
tions for all view data and defines a novel outlier score func-
tion based on the latent discriminant representations. Specifi-
cally, we represent multi-view data by a global low-rank rep-
resentation shared by all views and residual representations
specific to each view. Through analyzing the view-specific
residual representations of all views, we can get the outlier
score for every sample. Moreover, we raise the problem of de-
tecting a third type of multi-view outliers which are neglected
by existing methods. Experiments on six datasets show our
method outperforms the existing ones in identifying all types
of multi-view outliers, often by large margins.

Introduction

Outlier detection, or anomaly detection, is a basic data anal-
ysis technique which aims to identify the abnormal objects
in a dataset. It is widely applied in many fields, such as web
spam detection (Spirin and Han 2012), information dispar-
ity management (Duh et al. 2013), network failure detec-
tion (Ding et al. 2012). Many outlier detection methods have
been proposed over the past decades (Zhou, Yang, and Yu
2012; Schubert, Zimek, and Kriegel 2014). These methods
first analyze the distribution of a dataset, and then define cer-
tain criteria to identify outliers within it. However, it is wor-
thy to notice that these methods are targeted for data of only
one source, i.e., single-view data.

On the other hand, in numerous practical scenarios, data
are from various sources or acquired by different feature
extractors and shows heterogeneous characteristics. For ex-
ample, a person can be uniquely identified by his or her
face, fingerprint, iris or signature; while an image could
be described by the color or texture. These multi-view fea-
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tures represent the same instance from different perspec-
tives, thereby providing complementary information for the
instance. Taking advantages of these complementary infor-
mation across various views, multi-view based algorithms
often reach better performances than their single-view coun-
terparts (Ding and Fu 2014; 2016). However, detecting out-
liers from multi-view data remains challenging, due to the
complex distributions and inconsistent behaviors of multi-
view data samples.

A number of multi-view outlier detection methods have
been proposed to detect outliers that have abnormal be-
haviors in each view (Muller et al. 2012; Das et al. 2010)
or have inconsistent behaviors across different views (Gao
et al. 2011; Liu and Lam 2012; Iwata and Yamada 2016;
Li, Shao, and Fu 2015; Zhao and Fu 2015). These methods
usually compose of two parts: multi-view model formula-
tion and outlier score definition. In the multi-view model
formulation stage, the goal is to exploit the consensus na-
ture of multi-view data and uncover the subtle cross-view
differences. The outlier score definition stage is to define
some outlier measurements based on the cross-view differ-
ences revealed in the previous stage. In both stages, existing
methods only consider pairwise relationship between views,
making them hard to be extended into three or more views.

Two types of multi-view outliers have been addressed by
existing methods. They are attribute outliers and class out-
liers, following the terminology in (Zhao and Fu 2015). At-
tribute outliers are samples which have abnormal behaviors
in each view, and they will be considered as outliers in ev-
ery view. The red triangles in Figure 1 represent this type
of outliers. Class outliers are the data samples which ex-
hibit inconsistent characteristics (mainly referring to cluster
memberships) across different views. When considered in
each view individually, this kind of samples would not be
identified as outliers because they have normal characteris-
tics as other samples within each view. But when consid-
ering their mutual behaviors across views, we will identify
them as anomalies because they do not behave consistently
across views, not like the inlier samples. The green circles
in Figure 1 illustrate this type of outliers. It is easy to find
that there is a third type of outliers neglected by existing
methods. It is a mix of the above two types of outliers: the
samples exhibit class outlier characteristics in some views,
while shows attribute outlier properties in the other views.
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In other words, they are the samples which exhibit normal
within-view behaviors whereas inconsistent cross-view be-
haviors in some views, but consistently behave abnormally
in the other views. For terminological convenience, we call
this type of outlier as class-attribute outlier. Illustration of
this type of outliers is shown in Figure 1, indicated by the
blue squares.

In this paper, we propose a new multi-view outlier de-
tection algorithm which is able to detect all the three types
of outliers simultaneously, and is essentially extensible to
deal with any number of views. We achieve this by learn-
ing a latent discriminant representation for each view data
and defining a novel outlier score function based on the la-
tent discriminant representations of all views. Specifically,
we represent the input multi-view data by a global low-rank
representation shared by all views and view-specific residual
representations specific to each view. Through analyzing the
view-specific residual representations for all views, we can
get the outlier scores for the samples. Our major contribu-
tions are outlined as:
• We develop a new model for outlier detection from

multi-view data. Our model represents each view data by
a global low-rank subspace representation and a latent
view-specific subspace representation. The global low-
rank subspace representation encodes the consensus in-
formation shared by all views, while the latent subspace
representation encodes discriminant information specific
to each view. In this way, we do not need to encode cross-
consistency in a pairwise fashion, allowing our model to
conveniently handle three or more view data.

• We define an outlier score measurement by using the la-
tent discriminant representations of all views. Thanks to
the avoidance of calculating outlier score by permuting
view pairs, our outlier score measurement can better han-
dle the heterogeneity of cross-view data, thus being more
reliable for data of three or more sources. Moreover, our
outlier score measurement can easily handle multi-view
data of different dimensions and is totally unsupervised.

• To the best our knowledge, we are the first to raise the
problem of detecting the third type of outlier, as a comple-
mentation of the existing two types. We believe this com-
plementation is beneficial for the community to develop
more complete and reliable multi-view outlier detection
algorithms and systems.

Related Works

In this section, we introduce two most relevant research top-
ics to our approach, including multi-view outlier detection
and multi-view subspace learning.
Multi-view Outlier Detection. Traditional multi-view out-
lier detection approaches focus on detecting outliers that
exhibit abnormal behaviors in each view (Das et al. 2010;
Gao et al. 2010; Janeja and Palanisamy 2013). Recently, a
new branch of multi-view outlier detection methods have
been proposed (Gao et al. 2011; Liu and Lam 2012; Mar-
cos Alvarez et al. 2013). These methods try to find the sam-
ples that have inconsistent cross-view cluster memberships.
HOrizontal Anomaly Detection (HOAD) (Gao et al. 2011)

Figure 1: Illustration of three types of outliers.

pioneers this branch of methods. It firstly computes spec-
tral embeddings with an ensemble similarity matrix, and
then calculates the outlier score with the cosine distance be-
tween different embeddings. Subsequent works utilize so-
phisticated machine learning algorithms to detect inconsis-
tent characteristics for each object, e.g., consensus clustering
(Liu and Lam 2012), affinity propagation (Marcos Alvarez
et al. 2013), and probabilistic latent variable models (Iwata
and Yamada 2016). To identify two types of outliers simul-
taneously, l2,1-norm induced error terms are integrated into
low-rank subspace learning (Li, Shao, and Fu 2015) and K-
means clustering (Zhao and Fu 2015). Our method detects
the three types of outliers (see the introduction above) si-
multaneously and solves the problem of existing methods in
dealing with three or more view data by learning latent dis-
criminative subspace representations for multi-view data.
Multi-view Subspace Clustering. Subspace clustering
methods generally hold the assumption that data samples
are drawn from multiple subspaces corresponding to dif-
ferent clusters. Recently, the subspace clustering based on
self representation has been proposed, where each data point
in a dataset can be expressed as a linear combination of
the samples within the dataset (Liu, Lin, and Yu 2010;
Elhamifar and Vidal 2013). Multi-view subspace clustering
methods take advantages of the rich and complementary in-
formation of multi-view data for clustering task. (Guo 2013)
formulates the multi-view subspace learning as a joint op-
timization for a consensus subspace representation matrix
and a group sparsity inducing norm. (White et al. 2012) pro-
vide a convex reformulation of two-view subspace learning.
Some methods tackle this problem from the view of dimen-
sionality reduction, which typically learn a low-dimensional
subspace from the multi-view data and employ existing clus-
tering methods to get the results. The representatives of this
line include (Chaudhuri et al. 2009; Blaschko and Lampert
2008), which project the multi-view high dimensional data
onto a low dimensional subspace by exploiting canonical
correlation analysis. These existing multi-view clustering
methods have limitations of either targeting only from two-
view cases, or are quite susceptible with the quality of orig-
inal features, especially under the condition that the obser-
vations are insufficient and/or grossly corrupted (Cao et al.
2015). Our proposed multi-view subspace discovery model
is specially designed to deal with corrupted data and is not
limited by the number of views. We achieve this by express-
ing multi-view data with a common low-rank representation
and view-specific representations where view-discriminant
information (including outlier information) are encoded.
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Algorithm

In this section, prior to presenting the proposed method, we
introduce the preliminary knowledge about low-rank sub-
space analysis for the single-view case. Based on that, we in-
troduce the proposed multi-view outlier detection algorithm.

Low-Rank Subspace Analysis

A dataset usually lies in an underlying low-dimensional sub-
space, rather than distributing uniformly in the entire space
(Vidal and Favaro 2014). Thus, the data points can be rep-
resented by a low-dimensional subspace. Specifically, given
a dataset X = {x1, x2, . . . , xv, . . . , xn} ∈ R

d×n, by ex-
ploiting the self-expressiveness property, the dataset can be
represented as:

X = XZ + E, (1)

where Z = {z1, z2, . . . , zi, . . . , zn} ∈ R
n×n is the sub-

space representation matrix; each zi is the representation
of the original data point xi ∈ X based on the subspace.
E ∈ R

d×n is the error matrix. By assuming the samples in
the same cluster could be drawn from the same subspace, Z
should be a low-rank coefficient matrix that has the block-
diagonal structure. In this way, we can learn a compact co-
efficient representation for the original data by solving the
following problem:

min
Z,E

‖Z‖∗ + f(E)

s.t. X = XZ + E,
(2)

where ‖ · ‖∗ represents the trace norm (Candès et al. 2011).
Trace norm is a commonly-used approximation of the non-
convex rank(·) function. f(E) is some regularization func-
tion of E, for example, f(E) = ‖E‖2,1 (Liu, Lin, and Yu
2010).

We extend this single-view low-rank analysis method to
multi-view cases, by assuming that multi-view data can
be represented by a global low-rank coefficient matrix and
view-specific coefficient matrices.

Proposed Model

Denoted by X = {X1, X2, . . . , Xv, . . . , XV } the collec-
tion of V view data, where Xv ∈ R

dv×n denotes the n
samples of dimension dv from the v-th view. In each view,
we can learn a compact representation for the original data
through the above low-rank subspace analysis. From the per-
spective of data representation, since the new representation
of a data sample can be seen as the coefficient when the sam-
ple is expressed by all the samples, it is therefore reasonable
to expect the expression coefficients for the same sample to
be consistent across all views. This property can be exploited
to guide the multi-view subspace discovery process to learn
consistent cross-view representations.

However, when the data are corrupted by outliers, the
cross-view consistency property of multi-view coefficient
matrices may not be well preserved, especially when the data
are corrupted by class or class-attribute outliers because they
behave normally as inliers in some views and are hard to be
excluded for data representation. To cope this problem, we

formulate a robust multi-view subspace discovery model as:

min
Zc,Zv

r ,E
v

‖Zc‖∗ + α
V∑

v=1
||Zv

r ||2,1 + β
V∑

v=1
||Ev||2,1

s.t. Xv = XvZc +XvZv
r + Ev,

∀v = {1, 2, . . . , V },
(3)

where Zc is the coefficient matrix shared by all views, and
Zv
r is the residual coefficient matrix specific to the v-th view.

Ev is the error matrix for the v-th view.
We constrain the view-invariant coefficient ‖Zc‖∗ to be

low-rank, following the traditional single-view low-rank
subspace clustering algorithms. By taking advantages of the
good power of l2,1-norm in feature selection and error mod-
eling (Nie et al. 2010), we add ‖Ev‖2,1 in our objective
function. In fact, Zv

r can be viewed as the error compo-
nent for the coefficient matrix of the v-th view data. So,
we constrain it with ‖Zv

r ‖2,1 in our objective function as
well. Through representing the multi-view data with com-
mon coefficient matrix and view-specific matrices, and con-
strain them with low-rank and l2,1-norm, respectively, we
avoid to encode the consistency of multi-view data in a pair-
wise manner, making our model extensible to any number of
views.

One can observe that we represent each view data Xv

by a common coefficient matrix Zc shared by all views
and a latent view-specific coefficient matrix Zv

r in a self-
expression fashion, plus a view-specific error matrix Ev .
The common coefficient matrix Zc encodes the informa-
tion sharable across all views, while the view-specific co-
efficient matrix Zv

r represents the discriminant information
related only to the current view. As discussed above, class
outliers and class-attribute outliers have inconsistent clus-
ter membership in different views. This inconsistency will
be reflected in their corresponding view-specific coefficient
matrices, thus facilitating us to figure out the two types of
outliers. The view-specific error matrix Ev encodes gross er-
rors in each view data, from which we identify the attribute
outliers and class-attribute outliers.

Outlier Score Measurement

As analyzed above, the view-specific coefficient matrices
{Zv

r }Vv=1 encode the discriminant information for the multi-
view data, and the cross-view inconsistency can be ob-
tained by analyzing them. Therefore, class outliers and
class-attribute outliers can be identify from {Zv

r }Vv=1. Mean-
while, {Ev

r }Vv=1 encode the gross outliers, from which, we
can find out attribute outliers and class-attribute outliers. De-
noted by s(i) the outlier score for the i-th sample, we define
a novel outlier score function as:

s(i) =

V∑
v=1

‖Zv,i
r ‖22 + λ‖Ev,i‖22, (4)

where Zv,i
r and Ev,i are the i-th columns Zv

r and Ev , re-
spectively; λ is a balancing parameter.

Since the new representations of the i-th sample from all
views are {Zi

c + Zv,i
r }Vv=1, the first term

∑V
k=1 ‖Zv,i

r ‖22 can
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be viewed as the squared error of the sample’s new repre-
sentations. Similarly, the second term

∑V
k=1 ‖Ev,i‖22 is the

squared error of the error vectors for the i-th sample from
all view, under the zero-mean assumption of the gross out-
liers. Squared error measures the distribution compactness
of a group of data points, so that the smaller s(i) is, the less
likely the i-th sample is an outlier.

Our outlier score measurement avoids a series of prob-
lems existing in the previous methods. First, our measure-
ment can easily evaluate outlier scores of samples with more
than two views. Previous methods (Li, Shao, and Fu 2015;
Zhao and Fu 2015) evaluate outlier scores of samples in
pairwise manners, so that it is cumbersome to permute all
view pairs and calculate the outlier scores. Second, our out-
lier score function is completely unsupervised, unlike some
existing methods (Li, Shao, and Fu 2015; Zhao and Fu 2015)
which utilize class information to boost the outlier detection
performances. Third, some existing methods use element-
wise multiplication of cross-view data vectors to calculate
outlier scores, which limits their methods to be applicable to
only multi-view data of the same same dimension (Li, Shao,
and Fu 2015; Gao et al. 2011). In contrast, our outlier score
measurement does not have such a limitation.

Discussion

Our proposed method inherits some ideas from two recent
multi-view outlier detection methods, MLRA (Li, Shao, and
Fu 2015) and DMOD (Zhao and Fu 2015). We all tar-
get to detect multiple types of outliers simultaneously from
the perspective of feature representation: both MLRA and
our method learn subspace feature representations, while
DMOD takes the cluster indicator matrices as the new fea-
ture representations. All three methods use l2,1-norm to con-
strain the error matrices. Our method and MLRA both use
low-rank constraint to reveal the intrinsic structure of data.

However, our method differs from MLRA and DMOD in
the following aspects: (1) Our model is essentially extensi-
ble to deal with any number of data views, while it is hard
for MLRA and DMOD to do so. This is because we encode
cross-view consistency via learning a common representa-
tion shared by all view data. In contrast, the cross-view con-
sistency is guaranteed by enforcing pairwise similarity in
MLRA and DMOD. (2) Our outlier score function is able to
evaluate three or more view data of different dimensions and
is totally unsupervised, while those of MLRA and DMOD
are not. Our novel outlier score function does not rely on
pairwise analysis of the new representations as what MLRA
and DMOD do, so that it can calculate the outlier score for
each sample of any number of data sources. Meanwhile,
MLRA uses dot production to evaluate the correlation of a
pair of feature vectors, which requires the feature vectors be-
ing of the same dimension. So, MLRA is unable to handle
multi-view data of different dimensions. We instead calcu-
late outlier score for each sample simply by calculating the
square errors of the new representations and the error vectors
of samples, so that our method is able to handle multi-view
data of various dimensions. Furthermore, class information
are both utilized in MLRA and DMOD for boosting the out-
lier detection performance, which makes their methods not

fully unsupervised. Our outlier score function on the other
hand is totally unsupervised, which fits better for practical
applications. (3) MLRA and DMOD is designed to detect
the two types of multi-view outliers, while our method tar-
gets for detecting the three types of outliers simultaneously.

Optimization
We have presented above the proposed multi-view outlier
detection model and the corresponding outlier score mea-
surement. In this part, we introduce the details about how to
optimize the model and analyze the time complexity.

Our model in (3) is not jointly convex with respect to all
the variables, so that it is hard to global optimizer for it. So,
we adopt the famous inexact augmented Lagrange multiplier
(ALM) algorithm for efficiently optimizing it (Lin, Chen,
and Ma 2010). By introducing a relaxation variable J , we
rewrite our objective function as:

min
Zc,Zv

r ,J,E
v

‖J‖∗ + α
V∑

v=1
||Zv

r ||2,1 + β
V∑

v=1
||Ev||2,1

s.t. Xv = XvZc +XvZv
r + Ev,

∀v = {1, 2, . . . , V },
Zc = J.

(5)
To solve (5), we introduce Lagrange multipliers P and Qv

(v = 1, 2, . . . , V ), and formulate our objective function as:
Φ = ‖J‖∗ + 〈P,Zc − J〉+ μ

2 ||Zc − J ||2F+
α

V∑
v=1

||Zv
r ||2,1 + β

V∑
v=1

||Ev||2,1

+
V∑

v=1
(h(Zc, Z

v
r , E

v, Qv)− 1
μ‖Qv‖2F),

(6)

where h(Zc, Z
v
r , E

v, Qv) = μ
2 ‖Xv−XvZc−XvZv

r −Ev+
Qv

μ ‖2F), and μ > 0 is a penalty parameter. 〈·〉 represents the
inner product of two matrices, i.e. 〈A,B〉 = tr(A�B).

The variables in (6) can be alternatively optimized by fix-
ing the others when optimizing one of them. The step-by-
step optimization procedures are as follows.

Update J : By keeping only the terms relevant to J , we
obtain

J = argmin
J

1

μ
‖J‖∗ + 1

2
‖J − (Zc +

P

μ
)‖2F. (7)

The singular value thresholding (SVT) algorithm (Cai,
Candès, and Shen 2010) can be employed to get optimal so-
lution to this problem.

Update Zc: Ignoring irrelevant terms with respect to Zc

in (6), we obtain
Zc = argmin

Zc

〈P,Zc − J〉+ μ
2 ||Zc − J ||2F

+
V∑

v=1
h(Zc, Z

v
r , E

v, Qv).
(8)

Setting the derivative w.r.t. Zc to be 0, we obtain the solu-
tions as follows:

Zc =
1
μ (I +

V∑
v=1

Xv�Xv)−1(−P + μJ+

μ
V∑

v=1
Xv�(Xv −XvZv

r − Ev + Qv

μ )),

(9)
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Algorithm 1. Optimization of (3)
Input: Multi-view data X = {X1, X2, . . . , Xv, . . . , XV },

parameters α and β.
Initialize Zc = J = P = 0,

{Zv
r }Vv=1 = {Ev}Vv=1 = {Qv}Vv=1 = 0,

ρ = 1.3, μ = 10−4, μmax = 1010, σ = 10−6.
while not converged do

1: update J using (7).
2: update Zc using (9).
3: update {Zv

r }Vv=1 using (11).
4: update {Ev}Vv=1 using (13).
5: Update P and {Qv}Vv=1 using (14) and (15), respectively.
6: Update the penalty parameter μ by

μ = min(μmax, ρμ)
7: Check the convergence conditions:

||Xv −XvZc −XvZv
r − Ev||∞ < σ and

||Zc − J ||∞ < σ
end while

Output: Zv
r , E

v

Update Zv
r : Keeping the terms relevant only to Zv

r , we
have

Zv
r = argmin

Zv
r

= α‖Zv
r ‖2,1 + μ

2h(Zc, Z
v
r , E

v, Qv).

(10)
Following (Nie et al. 2010), we can get the solution as fol-
lows

Zv
r = −(2αRz + μXv�Xv)−1(

μXv�(XvZc + Ev −Xv − Qv

μ )
)
.

(11)

where Rz is a diagonal matrix, i.e., Rz =
diag(r1z , r

2
z , · · · , rnz ), with riz = 1

2
√

‖Zv,i
r ‖2

2+ε
. ε is a

small constant used to avoid trivial solution, and Zv,i
r is the

i-th row of Zv
r .

Update Ev: Similarly, ignoring terms independent of Ev ,
we have

Ev = argmin
Ev

β
μ ||Ev||2,1 + 1

2 ||Ev − (Xv −XvZc

−XvZv
r + Qv

μ )||2F.
(12)

The solution of this type of problems has been discussed in
(Liu, Lin, and Yu 2010). Specifically, let Ω = Xv−XvZc−
XvZv

r +
Qv

μ , the solution of Ev then has the following form:

evi =

{ ‖Ωi‖−β
‖Ωi‖ Ωi, if β < ‖Ωi‖,

0, otherwise.
(13)

where evi is the i-th column is of Ev .
Update P and Qv: P and Qv are multipliers, we update

them as follows:

P = P + μ(Zc − J) (14)

Qv = Qv + μ(Xv −XvZc −XvZv
r − Ev). (15)

The complete optimization procedures are outlined in Al-
gorithm 1.

Table 1: Basic information of five datasets from UCI Ma-
chine Learning Repository.

zoo letter wine wdbc pima
# class 7 26 3 2 2
# sample 101 1300 178 569 768
# feature 16 16 12 30 8

Complexity Study

In this part, we study the complexity of our model. There
are three dominant time-cost components, i.e., low-rank op-
timization on J and matrix multiplication and matrix in-
verse on Zc and Zv

r . Specifically, low-rank optimization on
J ∈ R

n×n would cost O(n3). When n is very large, this
step would be very expensive. Fortunately, according to The-
orem 4.3 of (Liu et al. 2013), the SVD for J could be sped
up to O(rn2) where r is the rank of J . Each of the general
multiplication takes O(n3). The inverse operators also cost
O(n3). Thus, the time complexity of the steps 2-3 (Algo-
rithm 1) is O(n3).

Experimental Results

We employ six datasets for performance evaluation. Among
them, five come from UCI Machine Learning Repository1,
i.e., zoo, letter, wine, wdbc, and pima. Table 1 shows the
basic information about the five datasets. One thing worth
to be noted is that there are totally 20000 samples for the
26 letters in the letter dataset, with each letter containing
700∼900 samples. To save evaluation time, following the
strategy of (Li, Shao, and Fu 2015), we randomly select 50
samples for each letter, producing a subset of 1300 samples
for our experiments. The last dataset is BUAA VisNir, which
comprises of facial images of 150 persons, with 9 visual and
9 near infrared images for each person. The faces for the
same identity can be considered as two different views, as
they were collected in different conditions. Following previ-
ous methods, we vectorize the image pixel intensity values
and project the feature vectors into a 100-dimensional latent
space by PCA (Zhao and Fu 2015).

We employ four multi-view outlier detection algorithms
for comparison: HOrizontal Anomaly Detection (HOAD)
(Gao et al. 2011), anomaly detection via Affinity Propaga-
tion (AP) (Marcos Alvarez et al. 2013), Multi-view Low-
Rank Analysis (MLRA) (Li, Shao, and Fu 2015), and Dual
regularized Multi-view Outlier Detection (DMOD) (Zhao
and Fu 2015). For AP, we utilize the l2 distance with HSIC
to yield better performance. For all methods, we carefully
tune the parameters and report the best results.

All the six datasets are naturally outlier-free. To gener-
ate the three types of outliers, we follow (Gao et al. 2011)
and pre-process the data as follows: First, we split the fea-
ture vectors into V subsets (V � 2); each subset is con-
sidered as one data view. This feature splitting procedure is
not necessary for the BUAA VisNir dataset, because it natu-
rally composes of data from two sources. Second, we gen-
erate the three types of outliers: For the class outlier, we

1http://archive.ics.uci.edu/ml/
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Table 2: AUC values (mean ± standard deviation) on five datasets with outlier level 5% for each of the three types. The best
and second best results are in red and blue, respectively.

Two views Three views
zoo wine wdbc pima letter zoo wine wdbc pima letter

HOAD 0.63 ± 0.05 0.74 ± 0.08 0.67 ± 0. 07 0. 67 ± 0.10 0.31 ± 0.05 0. 58 ± 0.08 0.62 ± 0.10 0.66 ± 0.07 0.61 ± 0.19 0.28 ± 0.09
AP 0.85 ± 0.03 0.79 ± 0.03 0.98 ± 0.01 0. 74 ± 0.02 0.89 ± 0.01 0.78 ± 0.06 0.73 ± 0.03 0.91 ± 0.01 0.52 ± 0.02 0.75 ± 0.02

DMOD 0.76 ± 0.11 0.84 ± 0.15 0.86 ± 0.04 0.77 ± 0.07 0.85 ± 0.01 0.75 ± 0.06 0.84 ± 0.04 0.84 ± 0.04 0.80 ± 0.02 0.79 ± 0.01
MLRA 0.74 ± 0.05 0.83 ± 0.04 0.88 ± 0.02 0.77 ± 0.04 0.80 ± 0.02 0.74 ± 0.08 0.84 ± 0.03 0.84 ± 0.02 0.76 ± 0.02 0.79 ± 0.02
Ours 0.89 ± 0.04 0.89 ± 0.03 0.98 ± 0.01 0.85 ± 0.01 0.91 ± 0.01 0.86 ± 0.04 0.88 ± 0.03 0.97 ± 0.01 0.83 ± 0.02 0.87 ± 0.02

Table 3: AUC values (mean ± standard deviation) on the
BUAA VisNir dataset with outlier level 5% for each of the
three types.

AUC (mean ± standard deviation)
HOAD 0.71 ± 0.02
AP 0.96 ± 0.01
DMOD 0.89 ± 0.01
MLRA 0.90 ± 0.09
Ours 0.99 ± 0.01

randomly select two objects from two different classes and
swap their feature vectors in 	V

2 
 view(s) but not in the other
view(s). For attribute outlier, we randomly choose a sample,
and replace its feature in all views by random values. For
class-attribute outlier, we take two objects from two different
classes and swap the feature vectors in 	V

2 
 view(s), while
replace the feature vectors of the two classes with random
values in the other view(s).

We follow previous methods (Li, Shao, and Fu 2015) and
use AUC (area under ROC curve) as performance evaluation
metric. The same evaluation procedure are also adopted, by
randomly generating outliers for 50 times, evaluating each
method on the 50 sets, and reporting the average AUC value.

UCI Datasets

Table 2 shows the AUC values (mean ± standard deviation)
on the five UCI datasets. The two-view cases and three-view
cases correspond to two and three splittings of the origi-
nal features, respectively. Please note that the implementa-
tions of all baseline methods are designed for two-view data.
Their AUC values for three-view data are generated by av-
eraging the AUC values from all three pairs of views.

From Table 2, we can observe that the proposed method
consistently outperforms all the baseline methods, often by
large margins, in both two- and three-view cases. Some
baseline methods can reach comparable performances with
ours in some datasets, but perform much worse than ours in
the other datasets. A typical example is AP, which reaches
the same AUC value as ours in the wdbc dataset for the two-
view case, but its AUC value is more than 30 percents infe-
rior to ours in the pima dataset for the three-view case.

Comparing the AUC values for the two-view cases and
three-views cases, we observe that there are performance
drops for most methods in the majority of the datasets. The
reasons could be as follows: (1) The feature dimension in

Table 4: Average AUC values with two types of outliers. The
outlier level is 10% for each type.

HOAD AP DMOD MLRA Ours
zoo 0.63 0.80 0.71 0.72 0.85

wine 0.49 0.74 0.78 0.77 0.80
wdbc 0.57 0.97 0.76 0.76 0.97
pima 0.60 0.68 0.77 0.73 0.80
letter 0.38 0.86 0.81 0.77 0.88

BUAA-VisNir 0.71 0.91 0.78 0.86 0.96

each view for the three-view case is smaller than that in the
two-view case, leading to vaguer data grouping structure,
thereby inferior outlier assignment results. (2) The ratio of
abnormal features versus overall feature in the three-view
case is lower than that in the two-view case. For the class
and class-attribute outliers, half features are swapped in the
two-view case, while only 1/3 features are swapped for the
three-view case. The higher abnormal feature rate makes it
is easier to detection outliers from the two-view data.

In some datasets, some methods perform even better in the
three-view case than that in the two-view case. Apart from
the reasonable fluctuations caused by AUC value averaging,
we speculate another reason may be that these methods fa-
vor the feature structures for two-view case than that in the
three-view case.

It is noticed that our method is much more stable than the
baseline methods when extended from two views to three
views. This is within our expectation because our method is
essentially extensible to any number of data views.

BUAA-VisNir Dataset

Table 3 shows the experimental results on the BUAA Vis-
Nir dataset. We can see that our proposed method identifies
nearly all the outliers and gains AUC value of 99.4%. One
possible reason for the near-perfect performance is that both
the visual data and near infrared data are of favorable group-
ing structures, so that the outliers can be easily identified.

Analytical Experiments

Impact of Outlier Rate. We show in Table 2 the results
when each of the three types of outliers account for 5%
of the total samples. To further evaluate the robustness of
our method to outliers, we experiment on data corrupted by
higher percentages of outliers. As shown in Figure 3, we re-
port the results on the zoo dataset with outlier rate of 5%,
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(a) (b) (c)

Figure 2: Analytical experiments on the zoo dataset. (a): The AUC values with different values of α and β. (b): The AUC values
with different values of λ. (c): Convergence curve of the proposed method.

Figure 3: The AUC values with different percentages of out-
liers for each outlier type.

10%, 15% and 20% for each of the three types of outliers.
We can observe that our proposed method consistently out-
performs the others with all outlier rates. This substantiates
the robustness of the proposed method.
Performance with Two Types of Outliers. The above ex-
periments show that our method outperforms existing meth-
ods in detecting three types of outliers simultaneously. Since
the third type of outliers are introduced firstly in this paper
and are not what existing methods target for, we conduct an
additional set of experiments to show our superior perfor-
mances are not merely due to the introduction of the third
type of outliers. We corrupt the six datasets only by class
and attribute outliers and test if our method has advantages
over existing ones in their favored setting. Table 4 shows the
results with outlier level is 10% for both outlier types. We
can see that our method still outperforms the existing meth-
ods in this setting. This further proves the superiority of our
method in detecting multi-view outliers.
Parameter Analysis. Our method has three major parame-
ters, α, β, and λ, where α and β are used to balance different
terms of the objective function. λ is utilized in our outlier

score function to weight different components. We first fix
λ and evaluate the impact of α and β. Figure 2(a) shows
the AUCs when we permute the combinations of α and β in
{0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10} on the zoo dataset. We can
observe that our method is fairly robust with various values
of α and β. We set α = 1 and β = 1 as default.

We further evaluate the impact of λ on the performance
with fixed α and β. Figure 2(b) shows the change of AUC
with respect to different values of λ. We can see that the pro-
posed method maintains good performances within a wide
range for the value of λ. In practice, we choose λ = 0.1
as default. Note although we show here only the parame-
ter analysis results on the zoo dataset, similar results can be
obtained in the other datasets as well.
Convergence Analysis. To analyze the convergence prop-
erty of the proposed model, we calculate the relative errors
of the model on every view {‖Xv − XvZc + XvZv

r +
Ev‖F /‖Xv‖F}Vv=1 in each iteration. The change of the
maximal relative error w.r.t. iteration among all views on the
zoo dataset is shown in Figure 2(c). We can see that the max-
imal relative error decreases quickly first and remains stable.
This shows the good convergence property of our model.
Running Time w.r.t. View Number. In the case where there
are three or more views, our method does not rely on per-
muting all pairs of views. So the running time of our method
would not increase quadratically w.r.t. the increase of view
number. This is an appealing benefit of our method over the
existing ones. To verify this, we test in the zoo dataset by
splitting it into two and four subsets, and the corresponding
running times of our method are 0.59 and 0.73, respectively.
We can see that there is only 23% increase for the running
time when the view number is doubled. This indicates the
benefit of our method in dealing with data with many views.

Conclusions
We have presented in this paper a new multi-view outlier
detection method, which avoids the limitation of the exist-
ing ones that is difficult to extend from two views to three or
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more views. We achieve this by learning latent discriminant
subspace representations for all view data and defining a
novel outlier score function based on the latent subspace rep-
resentations. Moreover, we raise the problem of detecting a
new type of multi-view outliers neglected by existing meth-
ods. Experiments on six datasets show the proposed method
has superior performances in detecting all three types of out-
liers, has good convergence property and performs more ro-
bustly under high outlier levels.
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