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Abstract. In this paper, we propose a novel two-view line matching
method through converting matching line segments extracted from two
uncalibrated images to matching the introduced Ray-Point-Ray (RPR)
structures. The method first recovers the partial connectivity of line seg-
ments through sufficiently exploiting the gradient map. To efficiently
matching line segments, we introduce the Ray-Point-Ray (RPR) struc-
ture consisting of a joint point and two rays (line segments) connected to
the point. Two sets of RPRs are constructed from the connected line seg-
ments extracted from two images. These RPRs are then described with
the proposed SIFT-like descriptor for efficient initial matching to recover
the fundamental matrix. Based on initial RPR matches and the recovered
fundamental matrix, we propose a match propagation scheme consisting
of two stages to refine and find more RPR matches. The first stage is to
propagate matches among those initially formed RPRs, while the second
stage is to propagate matches among newly formed RPRs constructed by
intersecting unmatched line segments with those matched ones. In both
stages, candidate matches are evaluated by comprehensively considering
their descriptors, the epipolar line constraint, and the topological con-
sistency with neighbor point matches. Experimental results demonstrate
the good performance of the proposed method as well as its superiority
to the state-of-the-art methods.

1 Introduction

Image matching is an indispensable procedure in almost all applications which
require recovering 3D scene structure from 2D images such as 3D reconstruc-
tion, scene interpretation, robotic navigation, structure from motion, etc. A lot
of objects in real scenes can be outlined easily by line segments. So, recover-
ing 3D scene structure from line matches has advantages over that from point
matches. In some cases, for example, the scenes are poorly-textured, recover-
ing their 3D structures from line matches seems the only choice because point
matches are often insufficient in this kind of scenes. Despite that recovering 3D
scene structure from line segment matches seems a better choice than that from
point matches, both the instability of endpoints of line segments and the lost of
connectivity of line segments complicate the matching of line segments.
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Line matching methods can be roughly divided into two categories: methods
that match individual line segments and methods that match a group of line
segments. Some methods matching individual line segments take advantages of
the photometric information associated with the line segments, such as inten-
sity [1,2], color [3], or/and gradient [4,5] in the regions around the line segments.
All of these methods are based on the assumption that there are considerable
overlaps between corresponding line segments. But if two line segments in cor-
respondence don’t share sufficient corresponding part, it is hardly possible to
match them correctly. Moreover, these methods tend to produce false matches
in regions with repeated textures because of the lack of variation in the photo-
metric information. Another group of methods matching individual line segments
incorporate point matches into line matching [6–9]. These methods first find a
large group of point matches using existing point matching methods [10,11],
and then exploit invariants between coplanar points and line(s) under certain
image transformations. Line segments which meet the invariants are regarded to
be in correspondence. All these methods share the same disadvantage that they
tend to fail when scenes captured are poorly-textured since there are often not
sufficient point matches to be found in these scenes.

Matching group of line segments is more complex, but more constraints are
available for disambiguation. Most of these methods [12–14] first use some strate-
gies to intersect line segments to form junctions and then utilize features asso-
ciated with the junctions for line matching. In [15,16], line segments are not
intersected to form junctions, but the stability of the relative positions of the
endpoints of a group of line segments in a local region under various image trans-
formations is exploited. Their method is robust in some very challenging cases.
But the dependence on approximately corresponding relationship between the
endpoints of line matches leads to the tendency of the method to produce false
matches when substantial disparity exists in the locations of the endpoints.

Our proposed line matching method exploits features of junctions too, but
in a quite different way. At the place of the junctions, we form a Ray-Point-Ray
(RPR) structure, consisting of a junction point and two rays (line segments)
connected to the point. RPRs are described with a robust SIFT-like descriptor.
Through exploiting photometric and geometric constraints associated with RPR
matches as well as their topological relationship with neighbor point matches,
we propagate RPR matches in an iterative scheme. Experimental results show
our method generates more correct line matches with higher accuracy than the
state-of-the-art methods in most cases.

2 Partial Line-Connectivity Recovery

Line segments extracted by the existing line segment detectors [17,18] are often
separated with each other since the segmentation procedure. We refine them by
partially recovering their connectivity through exploiting the gradient map of the
original image. Given a line segment l1, we search its neighbors using two circles
centered at its two endpoints with the same radius, d. Other line segments fall
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inside these two circles are neighbors of l1. For a searched neighbor line segment
l2, if the orientation difference between l1 and l2 is less than a given threshold
α (α was set to 5◦ in this paper), we tentatively merge the two line segments
to a long one and adjust the endpoints of the new line segment to maximize
its Gradient Magnitudes (GM), which is the mean of gradient magnitudes of
all pixels in the line segment. The direction of a line segment is the direction
of the vector from one endpoint of the line segment to another one. The way
of adjusting the endpoints of a merged line segment to maximize its GM is
illustrated in Fig. 1 where l1 and l2 are two line segments to be merged, l3 is
the merged line segment, l′3 is an example of adjusting the endpoints of l3 to
find the line segment with maximal GM, and the red dots are pixels in the lines
orthogonal with l3 and passing through its endpoints. 5 pixels for each endpoints
is used, generating 25 candidate line segments by linking any pixel in one side to
all pixels in the other side. The one with maximal GM is selected as the merged
line segment of l1 and l2. If the GM of the merged line segment is greater than
80 % of the sum of that of l1 and l2, we accept it and use it to replace l1 and
l2 for further steps. If the direction difference between l1 and l2 is above α, we
intersect them and generate a junction. If the distance between the junction and
the endpoint of l1 is less than d, we accept the junction and extend l1 to the
junction. After all line segments being processed by above steps, we obtain a
new set of line segments in which some of which are connected with each other.
The steps above are conducted iteratively until no more line segment could be
merged or extended. Figure 2 is a demonstration of our line refinement method
on a real scene. Comparison between the second image and the third one shows
that some line segments are extended to be longer while some line segments are
merged with others.

Fig. 1. An illustration of merging two line segments and adjusting the endpoints of
the merged line segment to maximize the gradient magnitude of the line segment.

Fig. 2. An example of the method of recovering the partial connectivity of line segments
on a real scene: (Left) the original image; (Middle) the line segments detected by
EDLines [17]; (Right) the refined line segments by our method. The small circles in
the right image denote the added junctions.
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3 Line Matching

After recovering the partial connectivity of line segments, some line segments are
connected with others from which we construct two sets of initial RPRs from
two images respectively. Through describing and matching these RPRs, we find
a set of initial RPR matches, which are the basis for the propagation of RPR
match in an iterative scheme.

3.1 RPR Construction

Line segments may connect with each other in four forms as shown in Fig. 3. The
numbers of RPRs to be constructed are different in different forms. The principle
of forming RPRs from connected line segments is that any two line segments which
connect with a common joint point but are not in the same line can be used to form
a RPR. Under this principle, 1, 2 and 4 RPRs can be constructed in Figs. 3(a)–(c),
respectively. In Fig. 3(d), the number of RPRs to be constructed is dependent on
the number of line segments connected to the intersection and their configuration.

Fig. 3. Four forms of line segments connecting with each other.

3.2 RPR Descriptor

A RPR consists of a point and two rays (line segments) connected with the
point. Such relationship between the point and the two rays is stable under
image transformations. Inspired by SIFT [10], we use the directions of both rays
as dominant directions of the point and generate orientation histograms. Entries
in both groups of orientation histograms are concatenated to get the descriptor
of the RPR.

Fig. 4. An illustration of generating orientation histogram using one ray of a RPR.
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The way of generating orientation histograms using one of the rays of a RPR
is illustrated in Fig. 4, in which the direction of ray OA is currently used as
dominant direction. The region is a rectangle centered at the point with the
width along the ray of 8 pixels and the height of 16 pixels. The region is evenly
split into 4 subregions along the height, generating 4 rectangles with the same
size of 8 × 4. In each subregion, an orientation histogram containing 8 bins is
constructed. Thus, using one ray as dominant direction results in a vector of
8 × 4 = 32 dimensions, and the final descriptor of a RPR is a vector of 64
dimensions. For each pixel in the rectangle, its gradient magnitude is weighted
and added to corresponding entry of certain histogram according to its gradient
orientation. The weighted gradient magnitude of a pixel is calculated as:

G(x, y) = |g(x, y)| 1√
2πσ2

exp
(

− (Δy)2

2σ2

)
, (1)

where g(x, y) denotes the gradient magnitude of the pixel located at (x, y), Δy is
the distance of the pixel to the ray, σ is a parameter determining the weighting
function, and G(x, y) is the weighted gradient magnitude.

We utilize these ways to construct histograms base on the following two
reasons. The first reason is to promote efficiency of the descriptor while keeping
its distinctiveness. The choices of the height and width of the rectangle derive
from SIFT descriptor in which the region forming an orientation histogram is
a 4 × 4 square, while ours is a 8 × 4 rectangle. We do not split the region
into subregions along the ray like SIFT because the RPR descriptor is only 64
dimensions in our way, rather than 256 dimensions when using the strategy of
SIFT. It is certainly more efficient. Besides, in most cases, the numbers of RPRs
to be matched are far less than the numbers of detected keypoints of SIFT.
A descriptor with lower dimension is distinctive enough for matching. The second
one is to avoid the possible shift of the point along the ray. The point in each
RPR results from intersecting two lines in neighbor. Its position may shift slightly
along the ray since the positions of the two lines forming the point may vary
slightly under image transformations. If we split the region along the ray and
use the point as the basis for assigning weights, the histograms of regions in
correspondence would differ with each other mistakenly.

Two sets of RPR descriptors would be obtained after describing all RPRs
constructed from two images. The general way of matching these descriptors is
to like the SIFT matching procedure by computing their Euclidean distances and
selecting pairs of descriptors with the smallest distances as matches. But since
each RPR consists of a point and two rays connected with the point, there is
additional information available for disambiguation. The two rays in each RPR
locate in a local region. The difference between their directions should vary at
a small range under most image transformations. For a test pair of RPRs, if
θ1 and θ2 denote the direction differences of the two rays of the pair of RPRs,
then, |θ1 − θ2| should be a small value if the RPR pair is a correct match. This
constraint can be used to discard many false candidates before evaluating their
descriptor distances and thus contributes to better matching results.
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3.3 Global Image Scale Change Estimation

Our strategy for global image scale change estimation is based on the fact that
two images in the (approximately) same scale produce the most putative RPR
matches. We first build Gaussian pyramids for original reference and query
images. At the same time, line segments extracted from original images are
accordingly adjusted to fit the new images. In this paper, the pyramids have 4
octaves with 4 layers in each octave. After that, the original reference image is
to match all images in the pyramid built for the query image with their RPRs.
The same procedure is applied to the original query image and all images in the
pyramid built for the reference image. The pair of images producing the most
putative RPR matches is regarded to be in the same scale and will be used in
further steps.

3.4 RPR Match Propagation

Point matches obtained along with RPR matches can be used for the estima-
tion of the fundamental matrix. To achieve a stable and precise fundamental
matrix, we first use RANSAC [19] to estimate an initial fundamental matrix
and refine it by the Normalized 8-point Method [20] and Levenberg-Marquardts
optimization [21] in order. After that, we obtain the fundamental matrix and
the corresponding group of RPR matches, from which we commence propagat-
ing RPR matches. The RPR match propagation is achieved by progressively
increasing the threshold for the distance of an accepted point match according
to the fundamental matrix, which is defined as follows:

d (xi,x′
i) =

(
x′�
i Fxi

)2 ×
(

1
(Fxi)

2
1 + (Fxi)

2
2

+
1

(F�x′
i)

2
1 + (F�x′

i)
2
2

)
, (2)

where xi and x′
i represent the i-th candidate corresponding points in the refer-

ence image and query image respectively, and (Fx)2k denotes the square of the
k-th entry of the vector Fx. The distance will later be referred in a simplified
manner, as Distance according to Fundamental Matrix (DFM). RPR pairs whose
DFMs are smaller will be matched first and then serve as the basis for the next
iteration to introduce new RPR matches. Unmatched RPRs are first grouped
according to matched RPRs and then matched in corresponding groups. Point
matches are introduced to filter false matches while guide the process of adding
new matches.

Point Match Expanding. There are 3 pairs of points in each RPR match: one
pair of junctions and two pairs of endpoints of the two pairs of rays. The pair
of junctions are matched along with the RPR match. Point match expanding
process aims only at the two pairs of endpoints. For a test pair of endpoints, we
check if they can be regarded as a match based on the following criteria. First,
the distance of their descriptors should be less than a given threshold η (η = 0.5
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in this paper). We describe the pair of endpoints using the similar way as that
describing RPRs. But since only one ray is connected with each endpoint, their
descriptors are therefore only 32 dimensions by using the direction of one ray as
the dominant direction. Second, the DFM of the test endpoint pair should be
less than a pre-defined threshold (18 was used in this paper).

RPR Match Filtering. False RPR matches with the two points locating near
the corresponding epipolar lines may have been accepted by the fundamental
matrix mistakenly. These false matches can be eliminated by exploiting the topo-
logical consistency between RPR matches and their neighbor point matches.

For a RPR match (M1,M2), we first find out a certain number of the nearest
matched points to the points of M1 and M2. The number is set as 8 to make
a balance between efficiency and in-sensitiveness with noises among the point
match group. After that, we obtain two sets of neighbor matched points, M̃1

and M̃2 for M1 and M2 respectively. If (M1,M2) is a correct match, elements
in M̃1 and M̃2 should meet the following two conditions. First, a proportion of
elements in M̃1 and M̃2 should be correspondences. The proportion was set as
0.5 in this paper. Second, the distribution of elements in M̃1 and M̃2 and their
correspondences according to M1 and M2 should also be consistent with each
other. Refer to Fig. 5, AOB and A′O′B′ are a pair of RPRs in correspondence
from two images. The other RPRs in yellow are matched RPRs nearby. Matched
points generated by RPR matches are represented by yellow dots, which can
be the junctions or the endpoints of the matched rays. The junction and the
two rays in addition to their reverse extensions in each matched RPR form a
coordinate-like structure. Matched points distribute in different quadrants of the
coordinate. This kind of distribution is invariant under projective transformation
if the matched points are coplanar with the matched RPR in 3D space. So, a
proportion of elements in M̃1 and M̃2 and their correspondences should lie in the
same quadrants of the two coordinates formed by M1 and M2. The proportion
was set as 0.8 empirically in this paper. The kind of topological consistency
between RPR matches and their neighboring point matches will be referred in a
simplified manner, as Point Distribution Consistency (PDC) for subsequent use.

RPR Match Propagation. RPR match propagation consists of two main
steps: unmatched RPRs grouping and unmatched RPRs matching. For each
unmatched RPR, we find 3 of its nearest matched RPRs whose points are the
nearest 3 points to the point of the unmatched RPR among all points in matched
RPRs. The unmatched RPR is then put into the 3 groups. The reason that each
unmatched RPR is redundantly put into multiple groups is to ensure potential
matches will be distributed into at least one pair of groups in correspondence.
After that, there are one matched RPR and some unmatched RPRs in each
group. As shown in Fig. 5, unmatched RPRs, marked in blue, are distributed
in the four quadrants of the coordinates formed by the matched RPR. These
unmatched RPRs are divided into 4 groups according to the quadrants their
points belong.
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Fig. 5. An illustration of a pair of RPRs in correspondence and the distribution of
their neighboring line segments and RPRs. AOB and A′O′B′ are a pair of RPRs
in correspondence from two images. The other matched RPRs are marked in yellow.
Matched single line segments are marked in green. Unmatched single line segments and
RPRs are marked in blue. The yellow and green dots are matched points generated by
RPR matches and single line matches respectively (Color figure online).

After grouping unmatched RPRs in two images, the matching process is
performed in each pair of groups in correspondence. For each test RPR pair, it
will be accepted as a candidate match if it meets all these requirements. First,
the distance of their descriptors is less than a given threshold η1 (η1 equals 0.5 in
the paper). Second, the DFM of the pair of points is less than η2. The value of
η2 changes in every iteration. Third, the two RPRs meet the PDC.

Iterative Scheme. Some new RPR matches has been generated in previous
step. The point match group can be expanded again from the newly obtained
RPR matches. Under the new point match group, some false RPR matches may
be filtered out by rechecking their PDC since their neighbor matched points may
have varied. After that, it is necessary to update the point match group and line
match group since some RPR matches may have been deleted.

Up to now, an iteration of RPR match propagation has been fulfilled. Before
increasing the value of η2 and starting a new iteration, we need to conduct the
same iteration again without changing η2 to add those RPR matches neglected in
the previous iteration. In the previous iteration, several RPRs in one image may
be matched to the same RPR in another image as their best correspondence. We
select the pair whose descriptor distance is the smallest and reject others. The
left RPRs may find their correct correspondences under the new pair of groups
of unmatched RPRs. After that, we increase the value of η2 and begin a new
iteration.

The way of tuning η2 at different iterations determines the number of RPR
matches to be obtained and the times of iterations. So, it is necessary to explain
it separately. The same strategy is employed in the propagation of RPR match
among single line segments discussed in next section. DFM for a pair of point,
as defined in Eq. (2), is actually the quadratic sum of the distances of a pair of
points to corresponding epipolar lines. For a pair of points, P1 and P2, their
DFM can be represented as σ = d21 + d22 where d1 denotes the distance from P2

to the epipolar line determined by P1 and d2 denotes the distance from P1 to
the epipolar line determined by P2. Point matches in our case are not in precise
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correspondence, but in an approximate manner. Their DFM is a relative great
value. At the initial iteration, we accept two points as a match if η2 is less than
α. Then, we progressively increase η2 at a certain step until it reaches the upper
limit β. In this paper, α was set as 8 while β equals 18 and the step is 5 for two
adjacent iterations.

3.5 Single Line Segment Matching

RPR matches among initially formed RPRs are mostly found after propagation.
Each RPR match brings two line matches. Besides these line matches, there
exist a considerable amount of single line segments which do not connect with
other line segments but can find their correspondences in the other image. To
find these line matches, we first group single line segments based on matched
RPRs and then match them in corresponding groups.

Single Line Segment Grouping. For each single line segment, we find 3
nearest RPRs whose points are the nearest 3 points to the midpoint of line
segment among all points in matched RPRs. The line segment is then distributed
into the corresponding 3 groups. After that, in each group, there are a matched
RPR and some unmatched single line segments. Refer to Fig. 5, unmatched single
line segments, marked in blue, distribute in different quadrants of the coordinates
formed by the matched RPR. These unmatched line segments are then divided
into four groups according to the quadrants their endpoints belong to. For each
line segment, if any of its two endpoints lies in a certain quadrant, the line
segment is put into the corresponding group. Under this grouping strategy, each
line segment may be put into several groups. Despite, in most cases, this may
lead to multiple evaluations of the same pair of line segments, it is still necessary
to do so to ensure potential line matches will are distributed into at least one
pair of groups in correspondence.

Single Line Segment Matching. The matching process is conducted in each
pair of groups in correspondence. For such a group pair (G1,G2), there are a
RPR match denoted as (M1,M2) and two sets of single line segments. Each
single line segment in G1 will be evaluated with all single line segments in G2.
For a test pair (l1, l2), we first check whether the direction difference of l1 and
l2 is consistent with the direction differences of the two line segment matches
generated by (M1,M2). Correct line segment matches in local region share sim-
ilar direction differences under image transformations. So we calculate the mean
value of the direction differences of the two pairs of matched rays, denoted as
σ1. Suggest the direction difference between l1 and l2 is σ2. If |σ2 − σ1| < ε,
where ε is a user-defined threshold set as 20◦ in this paper, we accept the test
pair temporarily and take it for further evaluation.

Then, we use the epipolar constraint to check the approximate correspon-
dence of the endpoints of l1 and l2. It is unreasonable to count on the cor-
respondence of the endpoints of corresponding line segments to match them.
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However, we notice almost all line segment matches own at least one pair of
endpoints which approximately correspond with each other. Thus, if neither the
DFMs of the two pairs of endpoints of l1 and l2 is below a relatively small value
(100 is used in the paper), we regard (l1, l2) as a false match.

As mentioned before, the fundamental matrix is incapable to be used to dis-
card false corresponding points that approach the corresponding epipolar lines.
So some pairs of line segments may have passed previous constraint mistak-
enly. We employ topological consistency between line segment matches and their
neighbor point matches to avoid this problem. For l1 and l2, we find n (set as
8 in this paper) of the nearest matched points to the midpoints of the two line
segments, generating two point sets, S1 and S2. If (l1, l2) is a correct match, S1

and S2 should meet the following two conditions. First, a proportion of elements
in S1 and S2 should be correspondences. The proportion was set as 0.5 in this
paper. Second, a certain ratio, set as 0.8 in this paper, of elements in S1 and S2

and their correspondences should lie on the same sides of l1 and l2. The side of
a line segment is defined as clockwise or anticlockwise direction relative to the
line segment based on the endpoint whose x-coordinate is smaller.

If (l1, l2) has passed all tests above, we use the two line segments to intersect
with the two pairs of rays of (M1,M2) to form new RPRs. Through evaluating
the newly formed RPR pairs, we determine whether (l1, l2) can be accepted or
not. The way of matching the newly formed RPR pairs is same as that presented
in the step of RPR match propagation. If any of the two pairs of newly formed
RPRs is finally accepted as a RPR match. We regard (l1, l2) as a candidate
match.

After matching single line segments in all corresponding groups, we obtain
a set of new line segment matches and the corresponding set of RPR matches.
Among these RPR matches, there may exist several RPRs in one image match
with the same RPR in another image. We select the best one with the smallest
descriptor distance.

From the new line segment matches and RPR matches, we can expand the
point match group again using the same strategy as that presented in Sect. 3.4.
False RPR matches used to be accepted can possibly be discerned by rechecking
the PDC under the expanded point match group. Some false RPR matches may
have been removed after previous step. The line match group and the point
match group should accordingly be updated again.

Up to now, an iteration of propagating RPR matches among single line seg-
ments has been finished. Before increasing the threshold for DFM and con-
ducting a new iteration, the iteration without changing the threshold should be
conducted again to pick up matches neglected in previous iteration. After that,
we increase the value of the threshold and begin a new iteration to get more
line segment matches. The iteration will halt if the threshold reaches the upper
limit. The way of tuning the threshold at different iterations is the same as that
presented in Sect. 3.4.
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4 Experimental Results

Experiments on a set of representative image pairs were conducted to substanti-
ate the robustness of the method and to prove its superiority by comparing with
the state-of-the-art line matching methods.

(a) Light change: (253, 3, 98.8%) (b) Low texture: (26, 0, 100%)

(c) Rotation change: (240, 0, 100%) (d) Scale change: (134, 10, 92.5%)

(e) Viewpoint change: (548, 2, 99.6%) (f) Image blur: (120, 2, 98.3%)

(g) Viewpoint change: (152, 3, 98.0%) (h) JPEG compression: (266, 5, 98.1%)

Fig. 6. Results of the proposed line matching method on some representative image
pairs. The eight image pairs will be represented as P1–P8 in order for subsequent use.
See the text for details.

Line Matching Results. Figure 6 shows the line matching results on some
representative image pairs, denoted as P1–P8 in order. Two line segments in
correspondence are drawn in the same color with the same label. The statistical
results shown below each sub-figure in Fig. 6 is a triple consisting of the num-
ber of total matches, the number of false matches and the accuracy in order.
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It is noticed that our algorithm is robust under common image transformations,
namely light, scale, rotation, viewpoint changes, image blur, JPEG compres-
sion, and in poorly-textured scene. The accuracy is above 98 % on all image
pairs except P4, where there exists great scale change between the two images.
The reason that the accuracy of our method on image pairs with great scale
change is relative lower is that after being adjusted to the same scale, line seg-
ments lying closely in the original image become so adjacent with each other
that it is very hard to pick out the correct one.

Evaluation of the RPR Descriptor. The RPR descriptor describes the local
regions formed by a point and two rays connected with the point. The rela-
tionship between the point and the two rays is fully exploited, which results
in the descriptor is more robust and efficient than other famous local region
descriptors which directly describe the local regions centered at the points. We
use the same way presented in [22] to evaluate our descriptor and SIFT descrip-
tor [10]. We describe initially formed RPRs in image pairs P1–P8 by using our
proposed RPRdescriptor and the SIFT descriptor. The RPRs are matched by
evaluating their descriptor distances under the same threshold. For each image
pair, we count the number of correct matches, the number of total matches, and
the 1-precision, which is the ratio between the number of false matches and the
number of total matches. The comparative results are shown in Table 1. Note
that any pair of descriptors whose distance below the given threshold is regarded
as a match. So, one RPR in one image may match with several RPRs in another
image and all these matches are included into the total matches. This is why the
1-precisions of the matching results on some image pairs are so high. From the
table, it can be noticed that on some image pairs, our RPR descriptor generates
more correct matches, while the SIFT descriptor generates more correct matches
on the others. But on all image pair, the 1-precisions of our descriptor are lower
than that of the SIFT descriptor, which indicates our RPR descriptor is better
than the SIFT descriptor for the specific local regions.

Table 1. Comparative results of our RPR descriptor and SIFT descriptor on image
pairs P1–P8 by describing the local regions formed by RPRs. The triple elements shown
in the table represent the number of the correct matches, the number of total matches,
and the corresponding 1-precision.

P1 P2 P3 P4

RPR (116, 163, 28.8 %) (12, 16, 25.0 %) (241, 330, 27.0 %) (53, 77, 31.2 %)

SIFT (113, 217, 47.9 %) (16, 26, 38.5 %) (170, 271, 37.3 %) (72, 134, 46.3 %)

P5 P6 P7 P8

RPR (460, 601, 23.5 %) (17, 132, 87.1 %) (25, 110, 77.3 %) (23, 34, 32.4 %)

SIFT (325, 493, 34.1 %) (10, 259, 96.1 %) (41, 424, 90.3 %) (47, 95, 50.5 %)

Comparison with Single Line Based Methods. Two methods are selected
for comparison. They are Lines-Points Invariants (LPI) [8] and Line Signature
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(LS) [16]. Their implementations are provided by their own authors. Except
experimenting on image pairs P1–P8 using the three methods (LPI, LS and
RPR), we do another two groups of experiments on the same image pairs to
eliminate the influence of different line detection methods on the line matching
results. The first is that we take line segments used in LPI, detected by LSD [18],
as input for our method. The second is that we use our line segments, detected
by EDLines [17], as input for LPI. All comparative results are listed in Table 2.
From the table it can be concluded that no matter using line segments detected
by EDLines or LSD as input, our proposed RPR method generates much better
results than that of LPI. Our method can find quite more line matches with
higher accuracy in almost all cases. When comparing with LS, our method pro-
duces comparable number of matches but with higher accuracy on the image
pairs P1–P3. On the image pairs P4–P8, the accuracy of the two methods is
similar, but our method produces more correct matches.

Table 2. Comparative results of the proposed RPR algorithm, LPI [8] and LS [16].
The columns from the left to right are the results of our RPR method using line
segments detected by EDLines [17], our RPR method based on line segments detected
by LSD [18], LPI using line segments detected by LSD, LPI based on line segments
detected by EDLines, and LS. The triple elements shown in the table represent the
number of line matches, the number of false matches, and the accuracy respectively.
The last row represents the average accuracy of each method.

RPR (EDLines) RPR (LSD) LPI (LSD) LPI (EDLines) LS

P1 (253, 3, 98.8 %) (295, 5, 98.3 %) (219, 2, 99.1 %) (185, 9, 95.1 %) (248, 5, 98.0 %)

P2 (26, 0, 100 %) (30, 0, 100 %) (12, 0, 100 %) (15, 0, 100%) (53, 12, 77.4 %)

P3 (240, 0, 100 %) (219, 0, 100 %) (227, 2, 99.1 %) (235, 0, 100%) (242, 1, 99.6 %)

P4 (134, 10, 92.5 %) (153, 5, 96.7 %) (78, 3, 96.2 %) (92, 8, 91.3 %) (40, 3, 92.5 %)

P5 (548, 2, 99.6 %) (582, 3, 99.5 %) (390, 3, 99.2 %) (356, 2, 99.4 %) (271, 2, 99.3 %)

P6 (120, 2, 98.3 %) (287, 3, 99.0 %) (116, 5, 95.7 %) (142, 4, 97.2 %) (81, 2, 97.5 %)

P7 (152, 3, 98.0 %) (123, 1, 99.2 %) (90, 11, 87.8 %) (107, 8, 92.5 %) (139, 3, 97.8 %)

P8 (266, 5, 98.1 %) (292, 3, 99.0 %) (148, 5, 96.6 %) (193, 7, 96.4 %) (205, 4, 98.0 %)

98.2 % 99.0 % 96.7 % 96.5 % 95.0 %

Fig. 7. Three pairs of images used to compare our method with the method presented
in [14]. From left to right, the three image pairs will be represented as “apt”, “tcorner”
and “valbonne” in order for later use.
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Comparison with Junction Based Methods. Our method exploits features
of junctions for matching line segments. So comparisons with junction-based line
matching methods are necessary to comprehensively evaluate our method. The
method introduced in [14], represented as LICF, is used for the comparison. We
cannot obtain the implementation of the method, so the comparison is conducted
by evaluating the different performances of the two methods on same image pairs.
Figure 7 shows three image pairs used in the published paper. The corresponding
comparative results are shown in Table 3. Comparing the results of the two meth-
ods shows that our method produces fairly more matches with similar accuracy,
which means quite more correct matches are obtained by our method.

Table 3. Comparative results of our RPR method and LICF [14] on some image pairs.
Refer to Table 2 for details.

apt tcorner valbonne

RPR (190, 8, 95.8 %) (122, 3, 97.5 %) (123, 5, 95.9 %)

LICF (53, 3, 94.3 %) (70, 8, 88.6 %) (34, 1, 97.1 %)

Fig. 8. The results of our proposed RPR method, LS [16], and LPI [8] on image datasets
with various image transformations.

Comparative Performances under Image Transformations. Compared
with other line matching methods, one remarkable merit of our method is that
it produces more correct matches with high accuracy under various image trans-
formations. Figure 8 shows the results of our method, LPI [8], and LS [16] on the
famous image datasets, “graffiti”, “ubc”, “leuven”, and “bikes”1, in which view-
point change, JPEG compression, light change and image blur between images
exist respectively. Each dataset contains 6 images and the image transforma-
tions from the second to the last image relative to the first image is stronger
and stronger. Image pairs P7, P8, P1, and P6 are token from the four datasets
1 http://lear.inrialpes.fr/people/mikolajczyk/Database/index.html.

http://lear.inrialpes.fr/people/mikolajczyk/Database/index.html
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respectively. Figure 8 shows the matching results between the first and the sec-
ond to sixth image in each dataset. It is obvious that our method produces quite
more correct matches under these image transformations in most cases.

5 Conclusions

We propose a novel line matching method through converting matching line
segments to the newly introduced Ray-Point-Ray (RPR) structures. A SIFT-like
robust descriptor is proposed to match RPRs under an efficient iterative scheme
by progressively adding new matches while deleting false matches. Experimental
results demonstrate the robustness of the method and its superiority to the
state-of-the-art methods for the larger group of correct matches and the higher
accuracy in most cases.
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