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Abstract. This paper presents a new algorithm aiming for 3D Line Seg-
ment (LS) reconstruction in structured scenes that are comprised of a
set of planes. Due to location imprecision of image LSs, it often produces
many erroneous reconstructions when reconstructing 3D LSs by trian-
gulating corresponding LSs from two images. We propose to solve this
problem by first recovering space planes and then back-projecting image
LSs onto the recovered space planes to get reliable 3D LSs. Given LS
matches identified from two images, we estimate a set of planar homo-
graphies and use them to cluster the LS matches into groups such that
LS matches in each group are related by the same homography induced
by a space plane. In each LS match group, the corresponding space plane
can be recovered from the 3D LSs obtained by triangulating all the LS
correspondences. To reduce the incidence of incorrect LS match group-
ing, we formulate to solve the LS match grouping problem into solving a
multi-label optimization problem. The advantages of the proposed algo-
rithm over others in this area are that it can generate more complete and
detailed 3D models of scenes using much fewer images and can recover
the space planes where the reconstructed 3D LSs lie, which is beneficial
for upper level applications, like scene understanding and building facade
extraction.

1 Introduction

3D reconstruction from images has been a widely studied field of research
and some remarkable works have been done through exploiting feature points
extracted from images [1,9,30,37]. However, objects in man-made scenes are
often structured and can be outlined by a bunch of LSs. It is therefore advanta-
geous to get the 3D wireframe model of a scene by exploiting LSs on the images.
For example, for the house shown in Fig. 1(d), our proposed 3D LS reconstruc-
tion method to be introduced generates the 3D model shown in Fig. 1(e) using
only two images. It is easy to recognize the house from this 3D model, but hardly
possible to achieve this from the extremely sparse point clouds obtained by some
point based 3D reconstruction methods. Some works [12,28] also proved that 3D
modeling by exploiting both feature points and line segments on images resulted
in more accurate and complete results.
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Fig. 1. An example showing problems in 3D LS reconstruction and the results obtained
by our proposed solution. (a) An image of a roughly planar scene and the extracted
LSs. (b) The 3D LS reconstruction result for the scene shown in (a) by triangulating
LS correspondences from two images. (c) The 3D LS reconstruction result obtained by
the proposed method for the scene shown in (a) by using two images. The front view
and profile of the obtained 3D model are shown. (d) An image of a scene comprised
of multiple planes, and the extracted LSs. (e) The 3D LS reconstruction result for the
scene shown in (d) obtained by the proposed method using two images. Different colors
are used to differentiate 3D LSs lying on different space planes. (Color figure online)

Despite of the above benefits of exploiting LSs on images for 3D reconstruc-
tion, it is often hard to reliably reconstruct 3D LSs because of the unstableness
and low location accuracy of image LSs. Image LSs are the straight fittings of
curve edges detected on images so that sometimes a 3D edge results in two
straight fittings that are not precisely corresponding on two images. This fact
makes it difficult to reliably reconstruct 3D LSs through triangulating corre-
sponding LSs from two images. For example, to reconstruct 3D LSs in the scene
shown in Fig. 1(a), all of which can approximately be regarded to lie on a single
space plane, triangulating LS correspondences from two images capturing the
scene produced 3D LSs shown in Fig. 1(b). Obviously, there are many mistakes.
To solve this problem, some methods [12–14,17] resorted to exploit multiple
(three or more) images photographing a scene to eliminate the mistakes. These
methods involved establishing LS correspondences among multiple images, or
some sophisticated hypothesizing-and-testing procedures. In this paper, we pro-
pose a simple, yet effective, solution to this problem. Our solution requires only
two images and can be easily extended to more images, if available.

We observed from Fig. 1(b) that despite of many false reconstructions, the
3D model contains a big fraction of 3D LSs approaching to one space plane.
This fact makes it possible to recover the space plane from the 3D LSs using
RANSAC. Once the space plane being recovered, reliable 3D LSs can be obtained
easily by back-projecting image LSs onto the space plane. With this idea, errors
shown in Fig. 1(b) can be completely eliminated, as shown Fig. 1(c). The scene
shown in Fig. 1(a) comprises of only one main space plane, which enables us to
use all 3D LSs obtained by image LS triangulation to recover the space plane.
But for scenes comprised of multiple planes, such as the one shown in Fig. 1(d),
it is not clear which part of the obtained 3D LSs come from one plane, while
some others come from another one. We need to cluster the 3D LSs according
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to their coplanarity. Instead of directly analyzing the 3D LSs, we propose to
achieve this by exploiting LS matches obtained from the images.

Our solution is based on the fact that the projections of 3D LSs from a space
plane onto two images shall be related by the planar homography induced by the
space plane. Given LS matches identified from two images, we first estimate a
set of planar homographies and use them to cluster the LS matches into groups
such that LS matches in each group are related by a homography induced by
a space plane. Then, in each LS match group, the corresponding 3D LSs are
supposed to come from the same space plane, so that the final reliable 3D LSs
can be obtained as the single plane case shown in Fig. 1(a). To reliably cluster
LS matches, we formulate to solve the LS match clustering problem by solving
a multi-label optimization problem. With our solution, for the multi-plane scene
shown in Fig. 1(d), the 3D model shown in Fig. 1(e) are obtained. We can observe
that a big fraction of the scene LSs are correctly reconstructed and categorized
according to the space planes they lie.

In summary, the major contributions of this paper are twofold: First, we pro-
pose a new solution for solving the ambiguities in 3D LS reconstruction through
LS match grouping, space plane estimation and image LS back-projection. Sec-
ond, we formulate to solve the LS match grouping problem by solving a multi-
label optimization problem.

2 Related Works

We divide existing 3D LS reconstruction methods into two categories: meth-
ods that require LS matching before 3D reconstruction and those do not. Many
methods in the former category focus on the exploitation of different mathemat-
ical representations for a 3D line to establish the projective relationship between
a 2D line and its 3D correspondence, which is the foundation of 3D LS recon-
struction and camera calibration based on lines. A series of representations for
a line in 3D space have been proposed. They are plücker coordinates [3,20,25],
pair of points [2,10,11,22,29,36], pair of planes [11], a unitary direction vector
and a point on a line [34], the intersections a line with two orthogonal planes [32],
and a more recent one, Cayley representation [38]. With these representations,
researchers proposed various methods for reconstructing 3D lines and/or esti-
mating camera parameters. Some methods in the first category aim to recon-
struct 3D LSs in certain types of scenes, like scenes meeting Manhattan World
assumption [16,27], piecewise planar scenes [28] and poorly textured scenes [4].
The prior knowledge of these scenes decreases reconstruction uncertainties and
often benefits for remarkable results.

Some recent algorithms in this area attempt to free the reconstruction pro-
cedure from the heavy dependence on the LS matching procedure because it is
hard to get reliable LS correspondences in some kinds of scenes, such as poorly
textured indoor environments [21] and scenes containing wiry structures (e.g.,
power pylons [13]). Most of these methods adopted the strategy of firstly generat-
ing a set of 3D hypotheses for each extracted LSs, either by sampling the depths
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of the endpoints of 3D LSs to camera centers [17], or triangulating putative LS
correspondences after enforcing some soft constraints on the extract LSs [12,13],
and then validating the hypotheses by projecting them back to images. In [26],
a novel algorithm is proposed to obtain 3D LSs with an unknown global scale
from a single image capturing a Manhattan World scene. It is possible to do
so because 3D LSs in this special type of scenes can only distribute in three
orthogonal directions. This fact tremendously deceases the degrees of freedom
when to reconstruct the scene LSs.

Our method belongs to the first category and we focus only on 3D LS recon-
struction. The camera parameters are obtained by some external camera calibra-
tion methods, or some existing SFM pipelines. The most similar method to ours
is the one proposed by Kim and Manduchi [16], which also focuses on recovering
planar structures of a scene from LSs. But their method is confined to be only
applicable for structured scenes which meet Manhattan World assumption. Our
method is a more general one and do not underlie this pretty strong assumption.
Besides, their method exploits parallel LSs to determine their spatial coplanarity,
while our method instead uses planar homographies.

3 Algorithm

This section first presents our method for 3D LS reconstruction from two views
(images), and then introduces how we extend the two-view based method into
multiple views. To be clear, in this paper, when we say multiple views, we mean
three or more views, as a differentiation with two views.

3.1 Two-View Based 3D Line Segment Reconstruction

Given two images I and I′, suppose their corresponding camera poses are C
and C′, which can be obtained by some existing SFM pipelines, such as the
famous Bundler [30,31], or some camera calibration methods [25,39]. Suppose
LS matches obtained from I and I′ by a LS matcher is M = {(lm, l′m)}Mm=1.
The 3D LS reconstruction procedures begin with estimating a set of planar
homographies.

Homography from Line Segment Matches. A planar homography H is
determined by eight degrees of freedom, necessitating 8 independent constraints
to find a unique solution. However, when the fundamental matrix F between the
two images is known, H�F is skew-symmetric [19],

H�F + F�H = 0. (1)

The above equation gives five independent constraints on H, and the other three
are required to fully describe a homography. The fundamental matrix F can be
obtained easily by using some point matching methods, or computing from the
projection matrices of the two images [11], as they are known in our case.
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The homography induced by a 3D plane π can be represented as

H = A − e′v�, (2)

where the 3D plane is represented by π = (v�, 1) in the projective reconstruction
with camera matrices C = [I|0] and C′ = [A|e′]. A homography maps a point
from one 2D plane to another 2D plane. For a line segment match (l, l′), suppose
x is an endpoint of l, H maps it to its correspondence x′ as: x′ = Hx. Since l and
l′ correspond with each other, x′ must be a point lying on l′, that is, l′�x′ = 0.
Therefore, we obtain

l′�(A − e′v�)x = 0. (3)

Arranging the above equations, we get

x�v =
x�A�l′

e′�l′
, (4)

which is linear in v. Each endpoint of a LS in a LS match provides one such
equation. Two line segment matches, which totally provide four such equations,
are sufficient to compute v, and accordingly H from Eq. (2). If more such LS
matches are available, as long as they are induced by 3D LSs from space plane π,
additional constraints can be used to help more robust homography estimation.

Homography from Point Matches (Optional). If point matches from the
two images which are induced by 3D points also coming from space plane π
are available, they can be incorporated into the above LS match based local
homography estimation method. Note that point matches are optional for the
proposed method, and they are used only to provide additional constraints for
homography estimation. Suppose (p,p′) is a such point match, there exists p′ =
Hp. Replacing H using Eq. (2), we get

p′ = Ap − e′(v�p). (5)

From this equation, we know vectors p′ and Ap−e′(v�p) are parallel, and their
vector product is supposed to be zero:

p′ × (Ap − e′(v�p)) = (p′ × Ap) − (p′ × e′)(v�p) = 0. (6)

It holds when using Eq. (6) to form the scalar product with the vector p′ × e′

p�v =
(p′ × (Ap))�(p′ × e′)

(p′ × e′)�(p′ × e′)
. (7)

This equation is also linear in v and provides one constraint.

Line Segment Match Grouping. The last section presents how to estimate
a local homography from (at least two) LS matches (and optional point matches
when available) under the condition that they are induced by coplanar 3D LSs
(or points). It is yet hard to determine which LS matches meet this condition
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only from images. However, due to spatial adjacency, the projections of coplanar
3D LSs onto image planes are likely to be adjacent. Therefore, it is alternative
to use spatially adjacent LS matches to estimate local homographies.

For every LS match (lm, l′m) ∈ M, we search its spatial neighbors in M by
finding matched LSs from I which are adjacent to lm. A matched LS from I
which has at least one of its two endpoints dropping in the rectangle centered
around lm is regarded as a neighbor of lm, and the corresponding LS match is
regarded as a neighbor of (lm, l′m). For example, if matched LS ln is found to be
adjacent with lm, then LS match (ln, l′n) is treated as a neighbor of (lm, l′m). The
rectangle around lm has the width equaling to the length of lm and the height
of 20 pixels (10 pixels in both sides of lm) in this paper. When point matches
are available, we can also find point match neighbors for (lm, l′m) using the same
strategy. Having found the neighbors for (lm, l′m), we estimate the corresponding
local homography using the method presented in the last section.

A set of homographies, H = {Hi}Hi=1, can be obtained after processing all
LS matches in M. H denotes the number of homographies obtained and it is
often smaller than the number of elements of M because we sometimes cannot
find for a LS match even one neighbor, and a LS match alone is insufficient to
define a unique homography.

The projections of 3D LSs from a space plane onto two images would be
related by the homogrpahy induced by the space plane. Based on this fact, we
cluster LS matches in M using homographies in H. For a LS match (l, l′) ∈ M,
we find its most consistent homography matrix H ∈ H which minimizes the
distance of a pair of LSs according to a homography:

d =
l′�Hx1 + l′�Hx2 + l�H−1x′

1 + l�H−1x′
2

4
, (8)

where xi=1,2 and x′
j=1,2 denote the two endpoints of l and l′, respectively. Note

that each of the four components of the right side of the above equation measures
the distance from an endpoint of one LS to the other LS according to the given
homography. For example, l′�Hx1 measures the distance from x1 to l′ according
to H. In other words, it is the distance between point xh

1 = Hx1 and l′: l′�xh
1 =

l′�Hx1, where xh
1 is the mapping of x1 under H from I to I′.

After finding for each LS match in M a most consistent homography, some
homographies in H are assigned with some LS matches from M, forming a
LS match group set S = {Gi}Ns

i=1, where Gi denotes the i-th LS match group
whose elements are from M. Each LS match group in S is formed based on a
homography, induced by a space plane. Next, we merge some groups in S to
ensure LS matches induced by 3D LSs coming from the same space plane are
clustered into only one group.

For two LS match groups, Gi and Gj , suppose they are formed based on
homographies, Hi and Hj , respectively. If LS matches in Gi are consistent with
Hj , and the same goes for Gj and Hi, we merge the two groups into one. Here, a
group of LS matches are “consistent” with a homography means the average of
their distances according to the homography (the distance measure is defined in
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(a) (b) (c) (d)

Fig. 2. An example used to illustrate some important steps of the proposed two-view
based 3D LS reconstruction method. (a) The LS match grouping result before the
refinement procedure. The grouping result of the matched LSs in the first used images
is shown. LSs drawn in the same color are regarded to belong to the same group.
(b) The Delaunay triangles constructed using the middle points of matched LSs in
the first image to define the adjacent relationship among the LS matches. (c) The LS
match grouping result after applying the refinement procedure. (d) The final 3D LS
reconstruction result for the scene. (Color figure online)

Eq. (8)) is a small value (2 pixels in this paper). After this, we obtain an updated
LS match group set S, in which the elements decrease significantly.

Line Segment Match Grouping Result Refinement. We found that it
often brought in mistakes when we grouped LS matches only based on the dis-
tance of two LS correspondences according to estimated homographies, such that
some LS matches which should be assigned into one group but were clustered into
another group mistakenly. This kinds of mistakes frequently occur when there
are several similar space planes in the scene and the estimated homographies
are not so accurate. For instance, Fig. 2(a) shows an example of the LS match
grouping result using the strategy presented above. We draw in different colors
the matched LSs in one of the two used images to differentiate the groups they
belong. LSs drawn in the same color are supposed to appear on the same scene
plane if they have been correctly grouped. But, as we can see, a considerable
number of them are mistakenly clustered.

We propose to refine the LS match grouping result by enforcing spatial
smoothness constraint that requires LS matches induced by coplanar 3D LSs
are more likely to be adjacent with each other. We formulate to solve the LS
match grouping problem by solving a multi-label optimization problem and
minimizing

E =
∑

p

Dp(lp) +
∑

p,q

Vp,q(lp, lq), (9)

where the data term, Dp measures the cost of an object p being assigned with
the label lp, and the smoothness term, Vp,q encourages a piecewise smoothness
labeling by assigning a cost whenever neighboring objects p and q are assigned
with labels lp and lq, respectively. Specifically to our problem, the data term
Dp is the cost of a LS match p = (lp, l′p) being labeled to belong to a group
lp. Suppose the homography relating LS matches in lp is Hlp , Dp can then be
calculated from Eq. (8). The smoothness term Vp,q measures the cost of two
neighboring LS matches p and q being labeled to belong to groups lp and lq,



3D Line Segment Reconstruction in Structured Scenes 53

respectively. To define it, an adjacency graph among the LS matches needs to
be constructed. Inspired by [8,24], which constructed Delaunay triangles for fea-
ture points to define their adjacency, we construct Delaunay triangles using the
midpoints of matched LSs in the first image to define the adjacent relationship
among the LS matches, as shown in Fig. 2(b). Under this adjacency graph, we
set the smoothness term as

Vp,q(lp, lq) =
{

swpq lp �= lq
0 lp = lq,

where wpq is the weight for the edge linking vertexes p and q in the adjacency
graph. It is assigned by Gaussian function according to the distance between the
two vertexes to encourage vertexes with smaller distances being assigned with
a same label in a higher possibility. s is a constant to amplify the differences
of weights. It is empirically set as 4 pixels in this paper. Having defined all
the terms, we resort to graph cuts [5] to minimize the objective function. The
refined LS match grouping result corresponding to the minimum of the objective
function is shown in Fig. 2(c). Comparing Figs. 2(a) and (c), we can observe that
almost all mistakes have been corrected.

Space Plane Estimation and Trimming. For a LS match group Gi ∈ S,
triangulating all the pairs of corresponding LSs obtains a group of 3D LSs, Li.
All 3D LSs in Li are supposed to lie on a space plane Pi. We estimate Pi from the
endpoints of 3D LSs in Li using RANSAC. Next, we recompute the homography
induced by Pi and use it to check if LS matches in Gi are consistent with it or
not. We accept Pi as a correct plane only when the majority (0.8 in this paper)
of LS matches in Gi are consistent with it. This step can ensure only robust
space planes are kept for further processing because an accidentally formed LS
match group would not result in a robust space plane such that the majority of
the LS matches are consistent with its induced homography. If Pi is accepted,
the final reliable 3D LSs corresponding to LS matches in Gi can be obtained
simply by back-projecting matched LSs from one image onto Pi, producing an
updated Li. After processing all LS match groups in S, we obtain a space plane
set P = {Pi}Ki=1, and the corresponding 3D LS set L̂ = {Li}Ki=1.

To remove some falsely reconstructed 3D LSs brought by a few falsely
grouped matches that exist even after enforcing the smoothness constraint, we
intersect adjacent 3D planes, trim each plane at the intersection and keep the
half plane on which there are more 3D LSs than those on the other half plane. It
is reasonable to do so because only a minor (if any) fraction of 3D LSs on a plane
are falsely reconstructed and they are sure to lie on the opposite side (according
to the intersection) of the correctly reconstructed majority. Illustration of this
plane trimming strategy is shown in Fig. 3(a).

The way we determine the adjacency of space planes is as follows: We project
all groups of 3D LSs in L̂ onto the first image, generating 2D LS set L̂2d =
{L2d

i }Ki=1. Refer to Fig. 3(b), for two space planes Pi,Pj ∈ P, suppose their
corresponding 2D LS sets are L2d

i and L2d
j . Let the convex hulls determined by

L2d
i and L2d

j be CHi and CHj , respectively, and the convex hull determined by
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Fig. 3. Illustration of the strategy of removing falsely reconstructed 3D LSs. (a) Adja-
cent space plane intersection and trimming. (b) Finding adjacent space planes. (Color
figure online)

both L2d
i and L2d

j be CHw (the region outlined by dashed red line in Fig. 3(b)).
If there exists a third 2D LS set L2d

m ∈ L̂2d, which determines a convex hull CHm

that has a big overlapping ratio (0.6 in this paper) with CHw, we deem there
is a third space plane lying between Pi and Pj , and do not regard Pi and Pj

to be adjacent. Otherwise, we treat Pi and Pj as adjacent planes. This strategy
makes sense because it is very likely to be true in structured scenes that two
space planes are adjacent if there is not a third space plane between them.

In Fig. 2, we show the final 3D LSs for the scene in sub-figure (d). We can
see that the three main planes in this scene are recovered and all 3D LSs are
correctly reconstructed and clustered w.r.t. the space planes they lie.

3.2 Multi-view Based 3D Line Segment Reconstruction

If more than two images are available, it is easy to extend the above two-view
based 3D LS reconstruction method to deal with multiple views. We just need
to combine the results obtained from every adjacent pair of images. Specifically,
we begin to use the first two images to generate a set of space planes P1, and
the corresponding set of 3D LSs L̂1. The two sets are used to initialize the global
space plane set Pg = P, and the global 3D LS set L̂g = L̂1, for the whole scene.
The subsequent images are used to refine the two global sets. Each subsequent
image is used to reconstruct 3D LSs with its previous image (we assume the
input images are aligned), and generate a new space plane set Pi, and a new 3D
LS set L̂i. For each space plane Pij ∈ Pi, suppose its corresponding 3D LS set is
Lij ∈ L̂i, if Lij is consistent with a space plane Pm ∈ Pg, whose corresponding
3D LS set is Lm, we merge Pij and Pm into a new space plane using 3D LSs in
Lij and Lm. Next, we project 3D LSs in Lij and Lm onto the new space plane.
Otherwise, we regard Pij as a new plane and insert it into Pg, and meanwhile
insert Lij into and L̂g.

After processing all images, there would exist a considerable number of dupli-
cations in L̂g because a same 3D LS can be visible in more than two views and
be reconstructed in multiple times. We need to remove these duplications. Since
3D LSs in our case are organized w.r.t. space planes, the duplications of a 3D LS
must lie on the same space plane. We can therefore conduct duplication removal
plane by plane in 2D space. For each space plane Pi ∈ Pg, we project 3D LSs
on it to a 2D plane P2d

i . For a LS lm on P2d
i , we search its neighbors in a band

around it. The band has the width equaling to the length of lm and the height
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Algorithm 1. 3D Line Segment Reconstruction
Input: Images I = {Ii}N

i=1(N � 2), line segment matches M̂ = {Mi}N−1
i=1

Output: 3D line segments L̂g, space planes Pg

1: Initialize L̂g = ∅, Pg = ∅
2: for each Mi ∈ M̂ do
3: Estimate local homographies Hi using Mi.
4: Group line segment matches in Mi using Hi into clusters as Si = {Gj}M

j=1.
5: Refine Si through multi-label optimization.
6: for each Gj ∈ Si do
7: Estimate the corresponding space plane Pj .
8: Project line segments in Gj onto Pj and obtain 3D line segment set Lj .
9: if Pj can be merged with a space plane Pm ∈ P then

10: Merge Pj and Pm, update Pg and L̂g.
11: else
12: Insert Lj into L̂g, and Pj into Pg.
13: end if
14: end for
15: end for
16: Remove duplications in L̂g.

of 6 pixels (3 pixels in both sides of lm) in this paper. A LS ln is regarded as a
neighbor of lm if it meets the two condition: First, both its two endpoints drop
in the band around lm. Second, the direction difference between lm and ln is
less than 5◦. In this way, we obtain a set of neighbors for lm. All neighbors of
lm and lm itself are merged into a single LS. After that, we project the merged
new LSs from P2d

i back to Pi.
The above duplication removal strategy has advantages over existing methods

because it is easier and more reliable for us to define which LSs are adjacent
enough to be merged into one. We only need to search in the band around a LS
to find its possible duplications in a 2D plane, rather than in a cylinder in 3D
space as that done in [12,17]. Therefore, the cases that the 3D reconstructions
of multiple scene LSs being falsely regarded as the duplications of one scene LS,
and one scene LS being reconstructed with multiple 3D representations are rare
in our method. This contributes to the benefit of our method on delivering more
details of scenes.

Algorithm 1 outlines the main steps of the proposed method.

4 Experiments

This section presents the experimental results of the proposed method. All
images employed for experiments come from public datasets [17,18,33]. We used
the method presented in [36] for LS extraction and the method presented [15]
for LS matching.

4.1 Two Views

We presented in Figs. 1 and 2 two sample 3D LS reconstruction results based on
two views, and Fig. 4 shows four additional such results. We can observe from



56 K. Li et al.

Fig. 4. Two-view based 3D LS reconstruction results. The top row shows the first ones
of two images used for 3D LS reconstruction and the extracted LSs; the bottom row
shows the obtained 3D LSs.

these results that the proposed method successfully reconstructed a large part
of space LSs lying on main planes of the scenes, and correctly clustered them
according to the space planes they lie. The main structures of the scenes are
outlined by the reconstructed 3D LSs. This proves the feasibility of the proposed
two-view based 3D LS reconstruction method.

4.2 Multiple Views

In this part, we present the experiments of our method on two image datasets,
a synthetic image dataset and a real image dataset.

Synthetic Images. The synthetic image dataset has 80 × 3 = 240 images
photographing around a CAD model from the upper, middle and bottom view-
points. Each round consists of 80 images separated by a constant angle interval.
An example image from the dataset is shown in Fig. 5(a). We employed for exper-
iments only the 80 images for the middle round because we found in our initial
experiments that the reconstruction result generated by our method based on
the 80 images is negligibly different from that based on all 240 images, but the
running time dropped significantly. The result model, O80 is shown in Fig. 5(b).
We can observe from O80 that the main planes in this scene are correctly recov-
ered, and LSs in the scene are precisely presented and correctly clustered w.r.t.
the planes they lie. We overlapped O80 with the ground truth CAD model to
qualitatively evaluate the reconstruction accuracy, as shown in Fig. 5(c). As we
can see, the vast majority of the reconstructed LSs (in black) cling to or closely
approach the ground truth model, which indicates the high reconstruction accu-
racy. To test the robustness of the proposed method for 3D LS reconstruction
from a small number of images, we sampled from the 80 used images by taking
one from every three images, producing a new image sequence containing 27
images. Taking as input this new image sequence, our method generated the 3D
model, O27 shown in Fig. 5(d). Comparing O27 with O80, we can see that there
is no significant difference between them, except some missing LSs on the roof
and bottom of the captured house in O27; LSs on the walls of the house are
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identically and completely reconstructed in both models; LSs in O27 are also
correctly clustered w.r.t. their respective planes.

(a). Sample image (e). (g).(c). Overlapping result(b). (d). (f).

Fig. 5. 3D LS reconstruction results on a synthetic image dataset. (a) One of the used
images. (b) The 3D model (referred later as O80) obtained by the proposed method
using 80 images. (c) The overlapping result of O80 with the ground truth model of
the scene. (d) The 3D model (O27) obtained by the proposed method using 27 images.
(e)–(g) The 3D models generated by Line3D++ [14] using 240, 80, and 27 images,
respectively. The three models will orderly be referred later as C240, C80 and C27.

For comparison, we show in Fig. 5(e)–(g) the reconstruction models of a
recent algorithm, Line3D++ [14], using the whole 240 images of the dataset,
our used 80 images and 27 images, respectively. We can see that the reconstruc-
tion result of Line3D++ degenerates dramatically as the number of used images
decreases. Line3D++ is able to generate good result when plentiful images
are available, but cannot guarantee good performance with a small number of
images. Our method, on other hand, is much less dependable on the availability
of abundant images. Comparing Line3D++’s best model C240 with our model
O80, we can see that although C240 presents more details at the bottom of the
house, our model is much neater and contains less short LSs that are arbitrarily
distributed, which, to some extent, indicates our model is a better wireframe
model for the scene. Besides, through carefully inspection, we can observe that
for some scene LSs, C240 presents several duplications, while these cases are rare
in our model. This proves the benefit of our duplication removal strategy.

To quantitatively evaluate the reconstruction accuracy, following [12,13,17],
we calculated the Hausdorff distances between densely sampled points along the
3D LSs in our models and the ground truth CAD model, and computed the Mean
Error (ME) and Root Mean Square Error (RMSE). We do not directly compare
our measure data with that of Line3D++ because Line3D++ is based on the point
clouds and camera parameters generated by some existing SFM systems, whose
outputs are under arbitrary coordinates. 3D models generated by Line3D++ are
hence inherently under the input arbitrary coordinates. This fact hinders the
quantitative evaluations of models generated by Line3D++ because the under-
lying coordinates are inconsistent with that of the ground truth model. ICP [6]
is a powerful way to align point clouds from different coordinates, which makes
it possible to quantitatively evaluate the 3D models generated by Line3D++.
However, ICP itself shall introduce alignment errors, and these errors would be
counted into the errors between models generated by Line3D++ and the ground
truth model. Therefore, the error data calculated in this situation cannot reflect
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the true accuracy of the models. On the other hand, the camera matrices corre-
sponding to images in the synthetic dataset are provided and they are consistent
with the coordinates of the ground truth model. Our proposed method took the
provided camera matrices as input and produced 3D models that are naturally
aligned with the ground truth model. So, the error data of our models do not con-
tain alignment errors. For this reason, it is an unfair comparison if we compare
our error data (without alignment errors) with that of Line3D++ (with alignment
errors). Alternatively, since Line3D++ is a promoted version of the methods pre-
sented in [13] and [12] by the same authors, and these two methods do not rely
on SFM results, a comparison between our measure data with the report data in
[13] and [12] is also some kind of meaningful1. Meanwhile, we will show that this
indirect comparison does not affect us to reach a conclusion about the accuracy
performances of our method and Line3D++.

Table 1. The Mean Error (ME) and Root Mean Square Error (RMSE) data of the
reconstruction results obtained by our method and several other ones on a synthetic
dataset. “–” denotes the corresponding measure datum was not reported in the paper.

ρ = 1.0 ρ = 0.6

O27 O80 [17] [13] [12] O27 O80 [17] [13] [12]

ME 0.077 0.89 0.162 0.065 – 0.075 0.082 0.137 0.044 0.029

RMSE 0.114 0.135 0.291 0.196 – 0.104 0.109 0.189 0.080 0.046

Table 1 shows the measure data. We can see that when we set the cutoff dis-
tance threshold (distance values greater than this threshold are treated as gross
errors and excluded for ME and RMSE calculations) ρ = 1.0, as that applied in
[13], the RMSEs of our two models O27 and O80, are much better than the others,
while the MEs are slightly inferior to that of [13]. When we set ρ = 0.6 as that
used in [12], our two models are better than [17], but worse than both [12,13].
Since Line3D++ is promoted from [12,13], its generated model is supposed to be
of even higher accuracy. It is thus reasonable to infer that the reconstruction accu-
racy of C240 is better than our models. But as can be obviously seen from Fig. 5,
it is unlikely that the reconstruction accuracy of C80 and C27 is better than our
two models, O80 and O27, when the same numbers of images are used. Therefore,
we can reach the conclusion that Line3D++ can produce 3D models with higher
accuracy than our method, when plentiful images are available, but in the case
that there are only a small number of images, our method produces more accu-
rate 3D models.

Real Images. The real image dataset contains 30 images. Figure 6 shows the
result models of our method and Line3D++ generated from these images. As we
can see, in our model, the 3D LSs lying on the main planes of the scene are well
reconstructed; the details of the scene are precisely presented (see the bricks and
1 The authors of Line3D++ made the source code of Line3D++ publicly available, but

did not do so for its preliminary versions. So, we can only compare our measure data
with the reported data in the papers.
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(a) (b)

(d)(c)

Fig. 6. The 3D LS reconstruction results of the proposed method and Line3D++ on a
real image dataset. The top row shows our result model from two different viewpoints,
while the bottom row shows that of Line3D++.

windows of the selected dashed elliptical region shown in Fig. 6(a)). Our method
failed to reconstruct 3D LSs on the main planes of this scene shown in the selected
rectangle region in Fig. 6(b). This is because only several LSs were extracted on
these two planes and even fewer LS matches were obtained. Our method is unable
to reliably estimate a space plane when LS matches induced by 3D LSs on it are too
few, and hence incapable to reconstruct the 3D LSs on it. Comparing our model
with that of Line3D++, it is obvious that our model is much more complete and
detailed.

Running Time. The algorithm is currently implemented based on MATLAB.
The unrefined codes took 631 s on the 80 synthetic images and 1021 s on the real
image dataset on a 3.4 GHz Inter(R) Core(TM) processor with 12 GB of RAM. It
is expected that the code can be substantially accelerated after refinements and
being reimplemented in C++.

5 Conclusions

We have presented in this paper a new method about 3D LS reconstruction in
structured scenes. A new solution is proposed to solve the uncertainties in 3D LS
reconstruction by estimating space planes from clustered LS matches and back-
projecting image LSs onto the space planes. We introduce a multi-label optimiza-
tion framework to improve LS match grouping results. Experiments show the
superiority of the proposed method to others in this area for its better perfor-
mance in using small numbers of images and its ability of clustering 3D LSs w.r.t.
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their respective space planes, which is beneficial for upper level applications, like
scene understanding [23] and building facade extraction [7,35].
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