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Abstract

This paper presents a hierarchical method for matching line segments from two images. Line segments are matched first in
groups and then in individuals. While matched in groups, the line segments lying adjacently are intersected to form junctions. At
the places of the junctions, the structures are constructed called Line-Junction-Line (LJL), which consists of two adjacent lines
segments and their intersecting junction. To reliably deal with the possible scale change between the two images to be matched,
we propose to describe LILs by a robust descriptor in the multi-scale pyramids of images constructed from two original images.
By evaluating the description vector distances of LJLs from the two images, some candidate LJL matches are obtained, which
are then refined and expanded by an effective match-propagation strategy. The line segments used to construct LJLs are matched
when the LJLs they formed are matched. For those left unmated line segments, we match them in individuals by utilizing the local
homographies estimated from their neighboring matched LJLs. Experiments demonstrate the superiorities of the proposed method
to the state-of-the-art methods for its robustness in more difficult situations, the larger amounts of correct matches, and the higher

accuracy in most cases.
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1. Introduction

As a low-level vision task, image matching is fundamen-
tal for many applications which require recovering the 3D
scene structure from 2D images, like robotic navigation, struc-
ture from motion, 3D reconstruction, scene interpretation, etc.
The majority of image matching methods are feature point-
based [1, 2, 3, 4, 5, 6] which commerce the extraction of feature
points from images, followed by the utilization of the photome-
tric information adjacently associated with the extracted points
to match them. Objects in real scenes, however, can be easi-
ly outlined by line segments, especially for man-made scenes.
This indicates that it is better to recover 3D scene structures
based on line segments than that on feature points, at least for
some scenes [7, 8, 9, 10, 11, 12]. For example, for poorly-
textured scenes, where feature points are hard to be detected
and matched, recovering their 3D structures from line match-
es seems the only choice because their structures can be easily
outlined by several edge line segments [13]. Despite of these
advantages, both the lack of point-to-point correspondence and
the lost of connectivity and completeness of the extracted line
segments make line segment matching a tough task, which also
partly explains why line segment matching has been less inves-
tigated.

Line matching methods in existing literatures can general-
ly be classified into two categories: the methods that match
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line segments in individuals and those in groups. Some me-
thods matching line segments in individuals exploit the pho-
tometric information associated with individual line segments,
such as intensity [14, 15], gradient [16, 17, 18], and color [19]
in the local regions around line segments. All these method-
s underlie the assumption that there are considerable overlaps
between corresponding line segments. This assumption leads
to the failure of these methods in situations where correspond-
ing line segments share insufficient corresponding parts. Be-
sides, in regions with repetitive textures, these methods tend to
produce false matches since the lack of variations in the pho-
tometric information for some line segments. Other methods
matching line segments in individuals leverage point matches
for line matching [20, 21, 22, 23]. These methods first find a
large group of point matches using the existing point match-
ing methods, and then exploit the invariants between coplanar
points and line(s) under certain image transformations to eva-
luate the correspondence of the line segments from two images.
The line segments which meet the invariants are regarded to be
in correspondence. These methods utilize geometric relation-
ship between line segments and points, rather than photometric
information in the local regions around line segments, and are
thus robust even when local shape distortions are severe. How-
ever, these methods share a common disadvantage that they are
incapable of processing images in which the scenes captured
are poorly-textured since feature points are hard to be detected
and matched in this kind of scenes, which consequently disables
the use of point matches for line segment matching.

Matching line segments in groups is more complex, but more
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Figure 1: The flowchart of the proposed line matching algorithm.

constraints are available for disambiguation. Most of these
methods [13, 24, 25, 26, 32] first use some strategies to in-
tersect line segments to form junction points and then utilize
features associated with the generated junction points for line
segment matching. These methods transfer line matching to
point matching, a widely investigated problem which many ef-
fective algorithms target to solve. But junction points con-
tain more information than feature points detected by some de-
tectors [27, 28, 29, 30]. They are the results of intersecting pairs
of adjacent line segments and the relationship between junction
points and line segments forming them is additional and impor-
tant information that can be exploited for matching them. How
to effectively exploit features associated with junction points to
help match them is still an open issue. In [31], rather than ex-
ploiting features of junctions for line segment matching, the sta-
bility of the relative positions of the endpoints of a group of line
segments in a local region under various image transformations
is exploited. This method first divides line segments into group-
s and then generates a description of the configuration of the
line segments in each group by calculating the relative position-
s of these line segments. Since the configuration of a group of
line segments in a local region is fairly stable under most ima-
ge transformations, the description of the configurations of two
groups of line segments in correspondence should be similar. In
this way, groups of line segments can be matched. This method
is robust in many challenging situations, but the dependence on
the approximately corresponding relationship between the end-
points of corresponding line segments leads to the tendency of
this method to produce false matches when substantial disparity
exists in the locations of the endpoints.

Our proposed line matching method in this paper is a combi-
nation of the two categories methods described above. It match-
es line segments both in groups and in individuals under a hi-
erarchical framework. The framework is comprised of three
stages where line segments are matched in groups in the first

two stages while in individuals in the third stage. The three-
stage flowchart of the proposed line matching algorithm is il-
lustrated in Figure 1. For two sets of line segments extracted
from two images, the first stage commences intersecting neigh-
boring line segments to form junction points. At the places
of the formed junction points, we form the structures called
Line-Junction-Line (LJL), utilizing two adjacent line segments
and their intersecting junction. To greatly reduce the effect of
the scale change between the two images, we propose to build
Gaussian image pyramids for the original images and adjust the
LJLs constructed in the original images to fit each image in
the image pyramids and described them there by the proposed
LJL descriptor. Some initial LJL matches can be found by eva-
luating the description vector distances of LILs from the two
images. These LJL matches are then refined and expanded in
the second stage, where we propagate LJL matches by itera-
tively adding new matches while deleting possibly false ones.
In the above two stages, the line segments lying closely with
each other from the two images are matched along with their
constructed and matched LJLs. For those line segments lying
far away from others and are not used to constructed LJLs, we
match them in individuals in the third stage by utilizing the local
homographies estimated from their neighboring matched LJLs.

This work is an extension of our work presented in [32].
Compared with the previous one, this work makes promotions
in the following aspects. First, a more general way is utilized
to generate junctions using adjacent line segments. In [32], a
sets of line segments extracted by some line segment detectors
in a image are processed in advance before they are used for
matching by a series of procedures to obtain a new line seg-
ment set where some line segments are extended to be longer
and are connected with others. In this work, the line segments
extracted by line detectors are not required to be refined in ad-
vance, and can be used to generate junctions directly based on
the local spatial proximity. This promotion helps generate more



Figure 2: An illustration of finding line segments possibly
coplanar in 3D space. The rectangle filled in yellow is the affect
region of 1;. 1, Iz and l; are the three neighbors of 1;. w is a
parameter controlling the size of the affect region of 1.

junctions and contributes to better matching results. Second,
a more robust descriptor is proposed to describe the structure
(called RPR in [32], while LJL in this paper) formed by two
adjacent line segments and their intersecting junction. Third,
we propose a more reasonable strategy to deal with the possible
scale change between images. To match line segments from two
images with scale change, in [32], the global scale change factor
between the two original images is estimated and one of the two
images is adjusted to the same scale as the other one. This stra-
tegy is reasonable only when the scale change between the two
images is a global one. When scale changes between the two
images vary with local regions (often introduced by viewpoint
changes), this strategy is unable to reliably work. This disad-
vantage is solved in this paper and the proposed strategy can
deal with both global scale changes and locally variant ones.
Fourth, a more sophisticated way to match individual line seg-
ments is proposed. For line segments which cannot be matched
in groups (in RPRs in [32] while in LJLs in this paper), in [32],
they are used to intersect with those matched line segments to
construct new RPRs and matched along with the newly con-
structed RPR again. In this paper, they are matched by the local
homographies estimated from their neighboring corresponding
LJLs. All the above promotions together contribute to the better
performance of this work than our previous one.

Experimental results substantiate the advantages of this work
over the previous one and other state-of-the-art line matching
methods for its robustness under more severe image transfor-
mations, its better performance for poorly-textured scenes, the
larger amount of correct line matches obtained, and higher ac-
curacy in the majority of cases.

The remainder of the paper is organized as follows. Section 2
introduces the details of constructing, describing and matching
LJLs. The adopted match propagation strategy is described in
Section 3. The step of matching individual line segments failed
to be matched along with LJLs is described in Section 4. Ex-
perimental results are presented in Section 5 and some discus-
sion about the algorithm is given in Section 6. The conclusions
are finally drawn in Section 7.

2. Initial LJL Match Generation

The endpoints of line segments are unreliable for line seg-
ment matching since there often does not exist accurate point-
to-point correspondence for the endpoints of corresponding line
segments. The intersecting junctions of line segments coplanar

(a) (b)

Figure 3: Two configurations of a pair of line segments inter-
secting with each other.

in 3D space are however invariant under projective transforma-
tion and are thus reliable to be exploited for matching line seg-
ments. If the two intersecting junctions of two pairs of line seg-
ments are successfully matched, it is then easy to determine the
corresponding relationship between the two pairs of line seg-
ments forming them. Therefore, what needs to do first is to find
some line segments coplanar in 3D space to generate junctions.

2.1. LJIL Construction

It is hardly possible to determine which line segments are
coplanar in 3D space only from a 2D image without the projec-
tive information of the camera. But adjacent line segments pos-
sess a higher probability to be coplanar in 3D space due to the
spatial proximity. So, it is a good choice to intersect neighbor-
ing line segments to obtain reliable junctions. We use a similar
method as that presented in [26] to generate junctions. Refer
to Figure 2, for a line segments 1;, we define its affect region
as a rectangle (filled in yellow in the figure), which centers at
the midpoint of 1; and has the length |l;|+2w and the width of
2w, where |l;| denotes the length of 1; and w is a user-defined
parameter. Any line segment satisfying the following two con-
ditions is assumed to be coplanar with 1; in 3D space. First, at
least one of its two endpoints drops in the affect region of 1;.
Second, its intersection with 1; also drops in the affect region of
1;. Under these two conditions, in Figure 2, only 1, is accepted
to be coplanar with 1; in 3D space. 1; is rejected because its
intersection with 1; is not within the affect region of 1; despite
that one of its endpoint drops inside it. 1 is rejected for neither
of its two endpoints drops in the affect region of 1;.

The configurations of two line segments assumed to be copla-
nar in 3D space exist the two forms shown in Figure 3. In Fi-
gure 3(a), the intersection lies on one of the two line segments
(not on their extensions). In this case, two LILs, (OA, O, OC)
and (OB, O, OC) , are constructed. In Figure 3(b), the inter-
section lies on neither of the two line segments. Only one LJL,
(0A, 0, OC), is constructed.

2.2. LJL Description

The relationship between the junction and the two line seg-
ments in a LJL is invariant under image transformations, which
is exploited by our method to generate our proposed LJL des-
criptor. Inspired by SIFT [1], we construct gradient orientation
histograms in the local region around the junction in a LJL to
generate the LJL descriptor. Refer to Figure 4, the local region
covered by two concentric circles centered at the junction is ex-
ploited. The radius r of the smaller circle is half as that of the
bigger one. The two circles are divided by the two line seg-
ments in the LJL and their extensions into four parts. Each part
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Figure 4: An illustration of describing a LJL, (OA, O, OB),
with the proposed LJL descriptor.

contains a sector and a ring-shaped region, which is then evenly
divided into three subregions, resulting in that the three subre-
gions have the same area with the sector. Therefore, there are
totally 16 regions, two groups of eight regions with the same
areas, for constructing gradient orientation histograms with 8
bins, producing a vector of 128 dimensions as the descriptor of
a LJL. The strategy of assigning a weight to the gradient mag-
nitude of a sample point and the way of eliminating boundary
effects are the same as those in SIFT. A normalization on the de-
scription vector is necessary to reduce the effect of illumination
change. Since a LJL descriptor is generated by concatenating
two groups of histograms constructed in regions with different
areas and the numbers of sample points contributing to the his-
tograms are different, the normalization should be conducted
separately among each group of eight histograms constructed
in regions with the same area. After that, same as SIFT, a trun-
cation of large gradient magnitudes at a certain value, v (v = 0.3
in this paper), is applied to give greater emphasis on the distri-
bution of the orientations.

2.3. LJL Matching

To match LJLs from two images, the general way is to evalu-
ate their description vector distances. But since each LJL con-
sists of two line segments and their intersecting junction, there
is additional information available for disambiguation. The two
line segments in a LJL locate in a local region, indicating the
crossing angle of the two line segment should vary at a small
range under most image transformations. As illustrated in Fi-
gure 5, the crossing angle remains invariant with translation,
rotation, scale transformations, and changes slightly with mo-
derate affine change. For a test pair of LILs, suppose 6; and
6, denote the crossing angle of the two line segments of the
two LIJLs, respectively, the absolute difference of 6; and 6,,
6 = |6, — 6| should be a small value (6 = 30° in this paper)
if the LJL pair is a correct match. This constraint can help dis-
card many false candidates before evaluating their description
vectors and thus contributes to better matching results.

If a pair of LJLs satisfy the above constraint, we then evaluate
their description vectors. The proposed LIL descriptor is based
on a fixed-size window, which implies its inability of processing
images with scale changes. The following strategy is proposed
to solve this problem. Refer to Figure 6, we build Gaussian ima-
ge pyramids for both the two images to be matched and adjust,
if image sizes change, LJLs constructed in original images to
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Figure 5: The changes of the crossing angle of the two line
segments in a LJL with different transformations. (a): the ori-
ginal LJL; (b)-(e): the transformed LJLs, with translation (b),
rotation (c), scale (d) and affine (e) changes.

fit each image in the pyramids and describe them in that image.
Therefore, the descriptor of a LJL formed in the original ima-
ges comprises of a set of sub-descriptors computed in different
levels of the image pyramids, which makes the descriptors of a
pair of LJLs should be evaluated in a special manner. Suppose
L and L’ are two LJLs to be evaluated and D = {Di}l.L:‘O1 and
D= {D;.}?;OI are their descriptors, where L denotes the number
of levels of the pyramids. It is the product of the number of
the octaves in a pyramid, o, and the number of scales in each
octave, s. In this paper, we empirically set o as 4 and s as 2,
and thus L equals 8. D; and D} denote the sub-descriptors of L
in the i-th level and the sub-descriptors of £’ in the j-th level,
respectively. The distances between each sub-descriptor in D
and all sub-descriptors in 9 are calculated, and then the av-
erage of the k (set as 2 in this paper) smallest distance values
among {||D; — Z)}H}iL:’jl:O is regarded as the distance between D
and 9’. Those LIL pairs whose description vector distances
are smaller than a given threshold d, (d, = 0.5 in this paper) are
regarded as candidate LJL matches.

The above strategy is reasonable because if £ and L’ are
two LJLs in correspondence, since their descriptors are com-
prised of a set of sub-descriptors calculated in different scales,
there always exist at least one pair of sub-descriptors which are
computed in the (almost) same scale if the levels of image py-
ramids are sufficient, and, theoretically, their description vector
distance is smallest among all the sub-descriptor pairs. In case
that a pair of sub-descriptors which are calculated in different
scales but accidentally have the smallest description vector dis-
tance, which is often the case when the number of candidates
is great and the dimension of the descriptors is high, it is bet-
ter to use the average of the k smallest values among the vector
distances of all the sub-descriptors as the description vector dis-
tance of the candidate LJL pair.

3. LJL Match Propagation

Point matches, the junction pairs of LJL matches, can be
used to recover the fundamental matrix by using RANSAC. Af-
ter that, we obtain the fundamental matrix as well as a group
of LJL matches consistent with it. Based on these, we com-
mence propagating LJL matches among the unmatched LJLs.
The LJL match propagation is achieved by progressively in-
creasing the threshold for the point-to-epipolar-line distance of
an accepted point match according to the fundamental matrix.
LJL pairs with smaller distances of their junctions according
to the fundamental matrix are matched first and then served as
the basis for the next iteration of introducing new LJL matches.
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Figure 6: An illustration of describing and matching a pair of
LJLs in a multi-scale Guassian image pyramid scheme.

The topological distribution constraint on corresponding LJLs
and their neighboring corresponding points is exploited to filter
false matches while guide the process of adding new matches.

A correct LJL match should be consistent with their neigh-
boring point matches in the topological distribution. Refer to
Figure 7, (OA, O, OB) and (O’A’, O’, O’'B’), referred as L
and L', are a pair of LJLs in correspondence from two ima-
ges. The junction and the two line segments as well as their
extensions in each matched LJL form a coordinate-like struc-
ture. Neighboring matched points, the junctions in matched
LJLs, distribute in different quadrants of the coordinates. We
collect the n (n equals the smaller one between 10 and the total
number of matched points in this paper) nearest matched points
as M = {m;}?_, and M = {m}};?zl to the junctions O and O’
in £ and L', respectively. If (L, L) is a correct match, the fol-
lowing two conditions must be satisfied. The first one is that
there should exist a sufficient large proportion, p; (p1 = 0.5
in this paper), of correspondences in M and M. In addition,
if m; € M and m] € M are the correct correspondences,
they should be in the same quadrants of the two coordinates
formed by £ and £’ in a high probability. So, the second con-
dition is that among the correspondences in M and M’, those
with the same quadrants should account for a big proportion, p,
(p2 = 0.8 in this paper).

After the first stage of our method, we obtain the set of LIL
matches, M;, and the two sets of unmatched LJLs, U} and U/,
from the two images, respectively. In this match propagation
stage, we refine the set M, by adding new LJL matches from
U} and U, and eliminating the possible false ones in an itera-
tive scheme. While adding new LJL matches, each LJL in U,
is evaluated to all LJLs in U;. For a test pair of LJLs, it will
be checked by the following three constraints in order. First,
the point-to-epipolar-line distances of the pair of junctions in
the two LJLs should be less than some threshold d.. The value
of d, is set to 1 in the initial iteration and increased by adding
1 in each subsequent iteration. Most false test pairs can be fil-
tered out based on this constraint. Second, their description
vector distance is less than a given threshold d, (d, = 0.5 in this
paper). Third, the two LJLs should meet the topological distri-
bution constraint presented in the above paragraph. Some new
LJL matches would be generated after the above steps and bring
in new point matches. Under the new group of point matches,
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Figure 7: An illustration of the distribution of a pair of corres-
ponding LILs, (OA, O, OB) and (O’A’, O’, O’B’), and their
neighboring matched points brought by matched LJLs.

some LJL matches used to be consistent with their neighboring
point matches may turn out to be inconsistent with them and
therefore need be filtered out. The procedures of adding new
LJL matches and filtering out possibly false ones are conducted
iteratively until no new LJL matches are added or the iterative
times is greater than 5.

4. Individual Line Segment Matching

Line segments that have not been matched along with LJLs
in the above two stages are further matched in individuals in
the last stage of our method. They are first grouped according
to those matched LJLs, and then matched in each two corres-
ponding groups based on the local homography recovered from
the pair of matched LJLs in the two groups.

4.1. Individual Line Segment Grouping

Let M; = {(Lv,.l:’)}v be the set of V LJL matches iden-
tified before, where (£, £’) denotes the v-th LJL match. Let
K =1} and K" = {I }7 be the two groups of individual
line segments, which have not been matched before, from two
images, respectively. For each individual line segment l; € K or
l;. € K’, we search u (u = 3 in this paper) of its nearest matched
LJLs whose junctions close to the line segment. The line seg-
ment is then assigned into these corresponding u groups. In
this way, each matched LJL collects zero to multiple individual
line segment(s). Then, for each matched LIJL, we divide the
individual line segments it collects into four groups according
to the positions of these line segments relative to the matched
LJL. As illustrated in Figure 7, a LJL forms a coordinate-like
structure. The individual line segments this LJL collects dis-
tribute in its four quadrants. For each such line segment, if any
of its two endpoints lies in a certain quadrant of the coordinates
formed by the the LJL, the line segment is put into the corres-
ponding group. In this way, the individual line segments in K
and K’ form two sets, U = {IThim = 1,2,--- ,V;p =1,2,3,4)
and U = (I'lln = 1,2,---,V;q = 1,2,3,4}, respectively,
where 7% and 7’4 are the individual line segment sets whose
elements are collected from K and K", respectively. Then, the
line segments from each two corresponding sets, 7hand 7’7
when m = n and p = ¢, are evaluated and matched separate-
ly. Under this grouping strategy, each line segment may be



put into several groups. Despite that, in most cases, this may
lead to multiple evaluations of some pairs of line segments, it
is still necessary to do so to ensure potential corresponding line
segments would be assigned into at least one pair of groups in
correspondence and be evaluated at least one time.

4.2. Local Homography Estimation

We have assumed the two line segments forming a LJL are
coplanar in 3D space, and therefore a LJL match provides two
coplanar line segment matches, which can be used to estimate
a local homography with the combination of the estimated fun-
damental matrix.

A planar homography H is determined by eight degrees of
freedom, necessitating 8 independent constraints to find a uni-
que solution. However, when the fundamental matrix F be-
tween two images is known, then HTF is skew-symmetric [33]
as

H'F+FH-=0. (1

The above equation gives five independent constraints on H,
and the other three are required to fully describe a homography.
One line match provides two independent constraints [34], re-
sulting in the system is over-constrained since two coplanar line
matches exist in our case.

The homography induced by a 3D plane & can be represented
as

H=A-¢Vv", 2)

where the 3D plane is represented by & = (v, 1) in the pro-
jective reconstruction with the camera matrices C = [1|0] and
C’ = [Ale’]. The homography maps a point from one 2D plane
to another 2D plane. For a line segment match (1,1"), suppose
x is an endpoint of 1, the homography maps it to its correspon-
dence point X’ as

x = Hx. 3)

Since 1 and 1’ correspond with each other, X’ must be a point
lying on I’, which results in

I''x’ =0. 4)
Combining Egs. (2)-(4), we obtain
I'(A-evHx =0. 5
Arranging the above equation, we finally get

TATY
which is linear in v. Each endpoint of a line segment in a
line match provides a constraint equation, and two line seg-
ment matches totally provide four constraint equations. A least-
square solution of v can be obtained from the four equations.
The local homograpy H is then computed from Eq. (2).

4.3. Individual Line Segment Matching

After grouping, the individual line segments in one group
from an image are only evaluated and matched with the indi-
vidual line segments in the corresponding group from the other
image, which decreases the candidate pairs that need to be eva-
luated and thus improve the efficiency of our method and also
the accuracy of line matching results since less interferences are
involved when finding the correspondence for a line segment.
Suppose 1 and I’ are a pair of individual line segments to be
evaluated and they are collected by the pair of matched LJLs, £
and L', respectively. The LJL match, (£, £’), brings one point
match, (j, '), and two line segment matches, (1,,,1/,) and (1,,1,).
From £ and [’, the local homography, H is estimated, using
the strategy presented in Section 4.2.

We first check whether the rotation angle of 1 and I’ is con-
sistent with the rotation angles of the two pairs of matched line
segments brought by £ and £’. Correctly matched line seg-
ments in local regions possess similar rotation angles under
image transformations. Suppose the rotation angle of 1,, and
', is 0, and that of 1, and 1), is o, If there exists

<p, @)

’o_ Oty
2

where o~ denotes the rotation angle of 1 and I', and B is a user-
defined angle threshold set as 20° in this paper, we accept (1,1)
temporarily as a candidate match and take it for further evalua-
tion.

We then evaluate the candidate match (1,1") by the local ho-
mography estimated from (£, £’). This method is reasonable
only when the 3D correspondence(s) of 1 and I’ lie in the same
3D plane as that of the 3D correspondences of 1, (I,) and 1,
(I’). It is hardly possible to determine whether the 3D corre-
spondences of several 2D line segments are in same 3D plane
without the projective information of the cameras. But the
strategies used in our algorithm ensure the rationality of this
method. The first is the exploitation of the local spatial pro-
ximity. Line segments adjacent with each other in 2D images
are highly possible to be coplanar in 3D space. The two line
segment triples, (1, 1,, 1) and (I,,, I, 1), are clustered based
on the local spatial proximity, which guarantees a fairly high
possibility that the 3D correspondences of the line segments in
the two triples are on the same plane. On the other hand, the
success of matching the two LJLs, though we cannot absolute-
ly ensure the correctness of the matching, substantiates the 3D
correspondences of 1,, (I/,) and 1,, (I,,) are on the same 3D plane.
The second is the redundant grouping strategy. Each indivi-
dual line segment is redundantly collected by several neighbor-
ing matched LJLs, which greatly increases the possibility that
two potential corresponding line segments are distributed into
at least one pair of groups where they are coplanar with the two
pairs of matched lines in 3D space.

If (1, I') is a correct match, the correspondences of the two
endpoints of 1, mapped by the estimated local homography,
must be adjacent with (ideally on) I’, and the same goes with
the endpoints of I’. We use the affect region of a line segment
to apply this constraint. The affect region of a line segment is
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Figure 8: An illustration of evaluating a pair of candidate line
segment correspondences using the estimated local homogra-
phy. land I’ are the two line segments to be evaluated, 1, and I
are their correspondences mapped by the estimated homogra-

phy.

darker side

(a)

Figure 9: An illustration of using the brighter side constraint
to help match line segments. 1is a line segment from a image.
17 and I are the two candidate correspondences for 1 from the
other image. I is accepted as the correspondence for I because
its brighter side is the same as 1.

illustrated in Figure 2. It is a rectangle around the line segment
with a parameter controlling the size of the rectangle. This pa-
rameter w (see Figure 2) is set as 3 in pixels when applying this
constraint. Refer to Figure 8, we map l and 1’ to their correspon-
dences by the estimated local homography, generating 1, and I,
for 1 and I, respectively. If both I, and I, intersect with the af-
fect regions of I’ and 1 (the rectangles filled in yellow around I’
and 1), the match (1, 1) is temporarily accepted and is taken for
further evaluation. Here, a line segment intersects with a region
means there exists at least one point (not just the two endpoints)
on the line segment is within the region. We define the average
of the four distances, including the perpendicular distances of
two endpoints of I}, to 1 and the perpendicular distances of the
two endpoints of 1, to I, as the mapping error of (1,1), which
is used to measure the similarity of 1 and I’. The four distances
are denoted as d;, d», d3 and d, in Figure 8, then, the mapping
error of (I, 1) is:

di+dr+dz+dy
1 .

While finding the correspondence for a line segment, the
above constraints are unable to discern the false candidates
when they have similar directions with the correct one and are
adjacent with it. Refer to Figure 9, while we find the correspon-
dence for 1, both I} and 1, may be accepted by the above con-
straints because they are close with each other and have sim-
ilar directions. We use a simple but effective way to enforce
the constraints on correct line segment matches by finding the
brighter sides of line segments. Refer to Figure 9, we calculate
the average intensity values of pixels in the two small rectan-
gles lying in the two sides of a line segment and regard the side
where the average intensity value is higher as the brighter side.
Since the brighter side of a line segment indicates the relative
brightness of the two small regions along with a line segment,
it is invariant under almost all image transformations and thus

EQLY) = ®)

Figure 10: The five image pairs, leuven, bikes, ubc, graffiti,
and boat, used for selecting proper values for the two key pa-
rameters in our method and for evaluating the proposed LIL
descriptor.

can be exploited to find the correct correspondences for line
segments. In Figure 9, we finally pick out I} as the correct cor-
respondence of 1 since it has the same brighter side as 1.

After that, there may exist the cases that one line segment in
one image is matched with several line segments in the other
image. We select the pair with the minimal mapping error as
the correct match and reject the others.

5. Experimental Results

Extensive experiments on representative image pairs were
conducted to select proper values for some parameters of the
proposed method and to evaluate its performance under various
image transformations and in some special scenes, as well as to
compare it with the state-of-the-art line matching methods.

5.1. Parameter Selection

Our algorithm has some parameters, but only two of them are
key to influence the performance of the algorithm. Other pa-
rameters are used to strengthen some constraints and the fluctu-
ations of their values make slight differences on the results. The
first parameter is w which controls the size of the affect region
of a line segment when constructing LJLs. The second param-
eter is r, the radius of the smaller of circle when describing a
LJL. The five representative image pairs [37] shown in Figu-
re 10 were employed to help fix the two parameters. There are
illumination change, image blur, JPEG compression, viewpoint
change, scale and rotation changes between the two images in
the five image pairs in order. Since the two images in each ima-
ge pair are related by a known homography, we can evaluate
the performance generated by different parameters convenient-
ly and reliably, which benefits us to select optimal values for
the parameters.

We first conducted experiments to select a proper value for
w. It is obvious that a big value for w results in a big affect
region of a line segment and more intersections of line seg-
ments and more LJLs. Sufficient LJLs are the guarantee to
produce enough initial LJL matches and are therefore crucial
to the final line matching results because the subsequent steps
of adding more line segment matches are based on the initial
LJL matches. However, excessive LILs, especially when many
of them cannot find their correspondences in the other group
of LJLs, will harm the matching of them since more interfe-
rences are introduced, and will increase both the computation
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Figure 11: The changes of the average repeatability of the junc-
tion points in the constructed LJL from images shown in Fig-
ure 10 with different values of the parameter w.

time and memory to match them. We employed the way intro-
duced in [37] by calculating the repeatability of two groups of
points to select a proper value for w. In [37], the repeatability
score is used to evaluate different local region detectors under
various image transformations. It measures how the number of
correspondences depends on the transformation between two
images. Higher repeatability indicates better performance of
the image feature detection and is generally more conducive
for matching these features. We calculated the repeatability of
the junction points in constructed LILs under various values of
w and fixed w at the value with the highest repeatability. Al-
1 the five image pairs shown in Figure 10 were employed for
experiments and the average repeatability of the junctions in
constructed LJLs in all image pairs is calculated. The change
of the average repeatability with respective to w is shown in Fi-
gure 11.We observe from this figure that the repeatability curve
increases when w is less than 20, and is stable until w is big-
ger than 25, where the curve begins to drop. Thus, both 20 and
25 are proper values for w. To reduce the computation time,
w = 20 was selected in this paper.

We then conducted experiments to find a proper value for the
parameter r, which determines the size of the local patch ex-
ploited for describing a LJL. The LJL descriptor is often more
discriminative but more sensitive to shape distortion when a
bigger patch is used. Table 1 shows the accuracies of the match-
ing results of the LJLs with various values of r on the five image
pairs shown in Figure 10. Since the average accuracy reaches
its maximum at r = 10, this setting was therefore applied in our
algorithm. Note that the correctness of a LJL. match is assessed
in this way: let (j,j") be the pair of junctions in a LJL match,
we map j and j* by the known homography, generating their
estimated correspondences, j;, and jj, for j and j’, respectively.
If both the distance between j;, and j and the distance between
j, and j’ are less than 5 pixels, we regard the LJL match as a
correct one. This correctness-assess strategy for point matches
seems problematical since it may label a false point match as a
correct one when one point in the match lies near the actual cor-
respondence of the other point. However, since in our situation,
the matched points are the intersecting junctions of line seg-
ments, the distribution of which is often much sparser and their
numbers are often smaller than the detected feature points by

r=4 | r=6 | r=8 |r=10|r=12 | r=14
leuven 0.81 0.85 0.87 0.84 0.85 0.84
bikes 0.63 0.64 0.61 0.59 0.58 0.60
ubc 0.74 0.74 0.77 0.72 0.72 0.69
graffiti 0.30 0.45 0.64 0.76 0.69 0.65
boat 0.09 0.21 0.31 0.44 0.40 0.27

| average [ 051 | 058 | 0.64 | 0.67 | 0.65 | 0.61 |

Table 1: The accuracies of the LJL structure matching results
on the five image pairs shown in Figure 10 under various values
of the parameter r.

some detectors. The cases that several matched points cluster
in a very small region are scarce. This fact ensures the reason-
ableness of our correctness-access strategy and the reliableness
of the value we set for r.

5.2. Robustness of the LIL Descriptor

After the key parameter for constructing a LJL descriptor be-
ing fixed, we conducted experiments to compare our LJL de-
scriptor with other local region descriptor(s) for the effective-
ness to describe the local regions around LJLs. The famous
SIFT descriptor [1] was employed for the comparison. The two
descriptors, LIJL and SIFT, were used to describe the junctions
in the constructed LJLs on the five image pairs shown in Figu-
re 10. The junctions were matched under the same threshold
for their description vector distances for both the two descrip-
tors. Note that since both SIFT and LJL are based on fixed-
size windows and are unable to deal with scale changes, we
described the junctions in LJLs using the two descriptors both
in the multi-scale image pyramid framework we proposed in
Section 2.3.

Table 2 shows the accuracies of the matching results of the
two descriptors. It can be observed from this table that on all
of the five image pairs, where various extreme image transfor-
mations exist, the proposed LJL descriptor produced matching
results with higher accuracies than SIFT. On some image pairs,
graffiti and boat, the advantage is fairly remarkable: the results
of LJL descriptor present the accuracy more than twice as that
of SIFT. This good performance of our LJL descriptor on the
matching accuracy is crucial for our method because it requires
estimating a precise fundamental matrix from the initial LJL
matches. A large proportion of correct matches certainly con-
tribute to better estimation result of the fundamental matrix. We
did not use the well-known local descriptor evaluation method
introduced in [36] because the proposed LJL descriptor is spe-
cially designed for LJLs. It describes the circular regions cen-
tered at the junctions in LJLs, rather than affine invariant re-
gions detected by some detectors, which is the prerequisite of
that famous local descriptor evaluation method.

The better performance of our proposed LJL descriptor over
SIFT in describing the local regions around the junctions of
LJLs owes to the following two factors. The first one is that
the regions for constructing the orientation histograms for LJL
descriptor are more likely to correspond with each other for cor-



leuven bikes ubc graffiti boat
LIL 0.84 0.59 0.72 0.76 0.44
SIFT 0.71 0.48 0.71 0.37 0.19

Table 2: The comparative junction point matching accuracies
based on the description by the proposed LJL descriptor and
SIFT descriptor on the five image pairs shown in Figure 10.

responding junctions than that of SIFT. We have clear and pre-
cise dominant directions to deal with possible rotation changes.
Either of the directions of the two line segments forming a junc-
tion can be regarded as the dominant direction of the junction,
according to which the region exploited for constructing the ori-
entation histograms are rotated. While in SIFT, the dominant
direction of a point is calculated from its neighboring region,
which is absolutely less precise than ours. Besides, the con-
figuration of the two line segments forming the junction in a
LJL is exploited for dividing the region around the junction in-
to subregions, where the orientation histograms are constructed.
Since the two line segments are clear and precise, subregions
divided by them are more likely to correspond with each other
for corresponding junctions than that of SIFT, in which sub-
regions are obtained by dividing the region regularly with the
same angle span (90°). The second one is the exploitation of
the constraint that the crossing angle of the two line segments
in a LJL should vary in a small range under image transfor-
mations, which helps discard many false candidate LIL pairs
before evaluating their description vector distances and hence
contributes to better matching results.

5.3. Line Matching Results

Figure 12 shows the line matching results of the proposed
method on eight representative image pairs which contain vari-
ous image transformations and were captured from both planar
and non-planar scenes. All these image pairs were used in the
published papers [22, 37], except the image pair (d), in which a
poorly-textured scene was captured in the two images. The aim
we employed this image pair is to evaluate the performance of
our method in poorly-textured scenes. The line segments used
for matching were extracted by the famous line segment detec-
tor, LSD [35]. The correctness of the obtained matches was
accessed by visual inspection.

It is observed that our algorithm is robust under common
image transformations, namely illumination, scale, rotation,
viewpoint changes, image blur, and JPEG compression and in
poorly-textured scene. The accuracies are above 95% on all
the image pairs. The robustness of our method owes to the fol-
lowing factors. The first one is the robust LJL descriptor. It is
specially designed for LJL while incorporates many benefits of
SIFT, leading to its robustness and high effectiveness for match-
ing LJLs. The second one is the adopted match-propagation
strategy. Through the exploitation of the topological distribu-
tion consistency between LJL matches and their neighboring
point matches and the recursive scheme of adding new matches
while deleting possibly false ones, the group of LJL matches is
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Figure 13: The incremental process of finding correct line
matches in different stages of the proposed method. The num-
ber in each bin denotes the number of correct line matches
found in the certain stage on the certain image pair.

expanded while false matches are well limited. The third one
is the novel approach of matching individual line segments by
utilizing local homographies recovered from neighboring cor-
responding LJLs. This strategy is unaffected by most image
transformations.

Figure 13 shows the incremental process of finding correct
line matches in different stages of our method on the eight ima-
ge pairs shown in Figure 12. It is observed from this figure that
the proportions of the correct matches found in different stages
accounting for the total correct matches vary greatly on diffe-
rent image pairs. For example, the correct matches found in the
first stage account for nearly 90% of the total correct matches
on the image pairs (b) and (c), while less than 50% on the ima-
ge pairs (e) and (g). On all the image pairs, the correct matches
found in the second stage account for a small part of the total
correct matches. This is because most LJL matches were found
correctly in the first stage, and there were only a few left to
be found. However, the second stage still plays an important
role in the algorithm, not only because some new LJL matches
would be added, but also because the false matches introduced
in the first stage are eliminated in this stage, which is significant
for limiting false line matches.

While counting the numbers of correct matches obtained in
different stages of our method, we found that, on all the ima-
ge pairs, almost all false matches among the final line matches
are introduced in the third stage, in which line segments are
matched in individuals by utilizing the local homographies es-
timated from their neighboring LJL. matches. This is because
the homography estimated from a pair of matched LJL is not so
precise. If the line segments in a LJL. match are not so precise-
ly detected and located, the homography estimated from them
would fluctuate around the precise one. When several line seg-
ments cluster in a small region of an image, this not so precise
homography may lead to the method’s incapability of picking
out the best correspondence. However, since some additional
constraints are applied when matching line segments in indi-
viduals, false matches are well controlled in our method.



(g) Image blur. (D1, D;) = (1700,454), T =334, F = 11, A = 96.7%.

(h) JPEG compression. (Dg, Dy) = (590, 1083), T = 356, F = 14, A = 96.1%.

Figure 12: The line matching results of the proposed method on eight representative image pairs. We will refer the eight image
pairs as (a)~(h) for later use. In the caption of each subfigure, (D, D,) denotes the pair of numbers of the extracted line segments
in the two images. T represents the number of total matches found by the proposed method between the two sets of line segments
extracted from the two images. F and A denote the number of false matches among the total matches and the corresponding
accuracy, respectively. Two line segments in correspondence from a pair of images are drawn in the same color and are labeled

with a same number at the middles.

We then compared our method with the state-of-the-art line
matching methods. Three methods were employed for the com-
parison. The first one matches line segments in individuals,
Lines-Points Invariant (LPI) [22]; the second one matches line
segments in groups, Line Signature (LS) [31]; and the last one
is our previous work Ray-Point-Ray (RPR) [32]. The imple-
mentations of LS and LPI were provided by their authors. To
eliminate the influence of different line detection methods on
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the line matching results, we took line segments used by these
three methods as input for our method. The comparative re-
sults are shown in Table 3. Note that the results of LPI on some
image pairs shown in this table is somewhat different (generally
better) from that shown our previous paper [32]. This is because
the provided implementation of LPI only uses the line segments
whose lengths are above 20 pixels as input for line matching.
But while doing experiments, we found that the line matching



LPI lines LS lines RPR lines

Ours LPI Ours LS Ours RPR
(@ (214, 97.5%) (136, 99.3%) (257, 99.2%) (189, 97.9%) (171,97.2%) (124, 99.2%)
(b) (362, 99.7%) (328, 99.4%) (579, 99.3%) (241, 99.6%) (298, 100%) (240, 100%)
(© (789, 99.6%) (735, 99.5%) (1229,99.1%) [ (269,99.3%) (699, 99.6%) (546, 99.6%)
(d (32,97.0%) (16, 100%) (31, 96.9%) (42, 95.5%) (24, 100%) (23,95.8%)
(e (144, 95.4%) (82,94.3%) (33,49.3%) (0,0) (118, 94.4%) (16,94.1%)
() (309, 99.4%) (276, 99.3%) (526, 99.1%) (214, 99.7%) (260, 97.7%) (124, 99.2%)
) (323, 96.7%) (82, 93.2%) (205, 94.0%) (17,73.9%) (151, 92.1%) (0,0)
(h) (342, 96.1%) (225, 93.4%) (311, 95.4%) (126, 92.6%) (259, 95.6%) (137, 94.5%)

| average | 97.7% [ 97.3% [ 91.5% [ 82.3% [ 97.1% [ 85.3% |

Table 3: The comparative line matching results of our method and three state-of-the-art line matching methods: LPI [22], LS [31]
and RPR [32]. The dual elements shown in the table represent the number of correct matches and the accuracy, respectively. The

last row represents the average accuracy of the generated results.

Figure 14: Six image datasets characterized by various ima-
ge transformations. There are six images with gradual image
transformation in each dataset, and only the first and the last
are shown here.

results of LPI became better, quite more correct matches and
comparable accuracy, if we removed the requirement for the
lengths of the line segments to be used for matching. So, this
paper shows only the better results of LPI while our previous
paper shows the results generated by the original implementa-
tion of LPI. Since the provided implementation of LPI also uses
LSD [35] for extracting line segments, the results of our me-
thods using line segments provided by LPI shown in the table
are the same as those shown in Figure 12.

Several interesting observations can be made from Table 3.
The first is that on the same image pairs, when using different
line segments as input, the line matching results of the same
method vary a lot, both in the numbers of correct matches and
the corresponding accuracies. For example, on the image pair
(e), where great scale and rotation changes exist, our method
generated fairly good result, 144 correct matches with the ac-
curacy of 95.4% when using the line segments provided by LPI.
However, the corresponding result drops drastically with only
33 correct matches at the accuracy of only 49.3% when using
the line segments provided by LS. The second is that when us-
ing the line segments provided by LPI as input, our method pro-
duced more correct matches on all image pairs than that of LPI,
and the average accuracy is higher despite that on the image
pairs (a) and (d), the accuracies are slightly lower. On the ima-
ge pair (g), where great image blur exists, our method produced
nearly 4 times of correct matches than that of LPI. The third is
that when using the line segments detected by LS as input, our
method has quite better performance than LS itself. Due to the
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Figure 15: The recalls of the line matching results of the pro-
posed method and LPI [22] on the six image datasets shown in
Figure 14.

multi-scale scheme, LS produced large groups of line segments,
which caused matching them being very time-consuming and
memory-consuming. With such large groups of line segments
as input, compared with LS, our method produced line matches
with much higher average accuracies and owned an overwhelm-
ing advantage in the amount of correct matches on some images
pairs. Our method found more than 12 times of correct match-
es than that of LS on the image pair (g) and nearly 5 times of
correct matches on the image pair (c). Besides, on the image
pair (e), LS failed to produce any correct line match, while our
method can still produce some through with a low accuracy.
The fourth is that, by taking the line segments used in RPR as
input, the proposed method excels both at the amount of cor-
rect matches and the accuracy. Remarkably, RPR failed on the
image pair (g), where there is great blur between the two ima-
ges, while the proposed method can still produce good results.
It generated 151 correct matches with the accuracy of 92.1%.
These advantages of the proposed method over RPR prove the
effectiveness of the promotions we have made based on RPR.

5.4. Further Comparison with LPI

From Table 3, we can conclude that our method and LPI are
the two most robust line matching methods. We conducted ad-
ditional experiments to further evaluate the two methods.



(d) Light change: (Left) Ours, #TotalMatches: 236, #CorrectMatches: 233; (Right) LPI, #TotalMatches: 83, #CorrectMatches: 81.

Figure 16: The comparative results between our method and LPI on some challenging image pairs. Please zoom in for better

interpretation.

We first experimented on some datasets related by global ho-
mographies. The six image datasets [37, 17] shown in Figure 14
were employed. These image datasets are characterized by illu-
mination, rotation, viewpoint and scale changes, image blur and
JPEG compression among the images, respectively. The reason
we employed them for experiments is because the global ho-
mographies between images in the datasets are known. Thus,
the ground truth of the line segment matches between images
can be established by mapping line segments detected in one
image to another one and finding if there are line segments in
the very close regions around the mapped line segments. With
the ground truth of line segment matches between images, the
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recalls (the ratio between the number of correct matches and
the number of ground truth correspondences) of line matching
results of these two methods can be calculated. In each data-
sets, the line segments detected in the first image were matched
with those detected in the other five images. The recalls of the
matching results for the two methods are shown in Figure 15.
It is observed from this figure that the recalls of the line match-
ing results generated by our method are higher than those of
LPI on almost all image pairs under all these six kinds of image
transformations except the two image pairs where JPEG com-
pression between images exists.

Beside experimenting on the common datasets, we had con-
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Figure 17: The elapsed time (in seconds) of each stage of our
method and the percentage it accounts for the corresponding
total elapsed time on each of the eight image pairs shown in
Figure 12. The number in each bin denotes the elapsed time of
the proposed method in a certain stage on a certain image pair.

ducted additional experiments on some very challenging image
pairs. The experimental results are shown in Figure 16, from
which we can observe that under these challenging cases, our
method is more robust and produces quite more correct match-
es.

6. Discussion

All the line matching results of our method presented above
are based on the fixed parameters, which we have discussed
in Section 5.1. In this section, we will discuss further about
how to adjust the values of some parameters to improve the
performance of our method for some specific applications.

6.1. Time Performance

Figure 17 shows the elapsed time of each stage of our method
and the percentage it accounts for the corresponding total elap-
sed time on each of the eight image pairs shown in Figure 12.
The proposed method was implemented with C++ and the com-
putation time was measured on a 3.4GHz Inter (R) Core(TM)
processor with 12 GB of RAM. It can be observed from this
figure that the total elapsed time of our method varies a lot on
different image pairs. Our method took nearly 660 seconds on
the image pair (c) while less than 2 seconds on the image pair
(d). Generally, the more complex the scenes captured are, the
more time it takes for our method to match the line segments
extracted from the images. This is because more line segments
can be detected in images of complex scenes and matching lar-
ger groups of line segments costs more time. Another observa-
tion from this figure is that the time spent in the first stage of
our method makes a dominant account for the total elapsed time
on all image pairs. The reason behind is that by building image
pyramids, each LJL constructed in the original images is adjust-
ed to all images in the pyramids and is described there. The time
of describing and matching LJLs from two images increase with
the number of the levels of the image pyramids. For example,
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Matching Results Running Times (s)

M-I M-1I M-I M-1I Drop
(@) || (214,97.5%) | (212,99.1%) 56.3 11.2 | 80.1%
(b) || (362,99.7%) | (379, 99.2%) 74.3 272 | 63.4%
(c) || (789,99.6%) | (786,99.6%) || 658.9 | 241.5 | 63.3%
(d) (32,97.0%) (24,100%) 1.9 0.7 62.0%
) || (309,99.4%) | (317,99.1%) 61.4 13.9 | 77.4%
(h) || (342,96.1%) | (334, 96.5%) 75.0 124 | 83.5%

Table 4: The line matching results and running time of the pro-
posed algorithm generated by building Gaussian image pyra-
mids (M-I) and without building Gaussian image pyramids (M-
IT) on some image pairs shown in Figure 12. The last column
shows the drop ratios of the running time of M-II relative to
M-I

on the image pair (c), which took the most time by our method,
4856 LILs were constructed in the first image and 4693 LJLs in
the second image. When the Gaussian image pyramids built for
the two original images have 4 octaves with 2 scales in each oc-
tave, there are 4856x8=38848 LJLs and 4693x8=37544 LJLs
required to be described for the two images, respectively. A LIL
descriptor is a vector of 128 dimensions. It is sure that match-
ing such large two groups of LJLs by evaluating the distances
between their description vectors in such a high dimension is
time-consuming. It seems that our method is impractical for
some applications which have strict requirement on the running
time. However, the time performance of our method can be
tremendously improved by adjusting some parameters for spe-
cific scenes.

The majority of the running time of our method was spent
in describing and matching LJLs from two images. There are
three parameters that control the number of the LJLs to be des-
cribed and matched. These three parameters are w that controls
the size of the affect region of a line segment, o, the number
of octaves of the image pyramids, and the number of scales per
octave of a pyramid, s. Both o and s are introduced when build-
ing Gaussian image pyramids to deal with the possible scale
changes between images. If we have the priori that there is
no or merely slight scale change or some fixed scale change
between images, then all the steps intended to deal with scale
changes between images are needless. We can match LJLs con-
structed in the original images or some specifically scaled ones
directly, which would save plenty of time.

Table 4 shows the comparative line matching results and the
corresponding running time on the six image pairs, (a)—(d), (f)
and (h) shown in Figure 12, with building the Gaussian ima-
ge pyramids (M-I), and without building the Gaussian image
pyramids (M-II). All these six image pairs share the similarity
that there are very little scale changes between the two images
and thus building Gaussian image pyramids is unnecessary for
them. From Table 4, we can see that the matching results ge-
nerated by M-II are similar with M-I both in the amounts of
correct matches and the accuracy, but the running time dropped
drastically. On the all image pairs, M-II took less than half of
the running time of M-I. Remarkably, on the image pairs, (a)



and (h), the drop ratios are more than 80%, which means M-II
used less than 20% of the running time of M-I.

Apart from choosing to not build image pyramids for ima-
ges with very little scale change to save time, decreasing the
value of the parameter w can also help reduce the running time
since less LJLs are constructed with a smaller value of w. This
strategy is especially efficient when scenes are rich-textured.
For example, on the image pair (c), where the scene has rich
texture and more than 1000 line segments were extracted in
both images, when the value of w was set as 20 in pixels, our
method spent 658.9 seconds matching the extracted line seg-
ments when building the Gaussian image pyramids and 241.5
seconds without building Gaussian image pyramids. But when
we set w = 5 without building the Gaussian image pyramids,
our method spent only 17.2 seconds and produced 788 correct
line matches with the accuracy of 99.6%. The matching result
is similar with those generated under a greater value of w, but
the cost time drops drastically. So, for scenes with rich texture,
selecting a smaller value for w can greatly promote the efficien-
cy of the method.

6.2. Poorly-Textured Scenes

While conducting experiments, we found that for image pairs
that were captured from poorly-textured scenes, if we increase
the value of the parameter w that controls the size of the af-
fect region of a line segment when constructing LJLs, the line
matching results are generally better. For example, on the ima-
ge pair (d) shown in Figure 12, when we varied w from 10 to 60
at the step of 10, we obtained 28, 33, 36, 37, 37 and 36 correct
matches in order. Though the increasing is not quantitatively
significant, it is particularly meaningful for this special scene
because a more complete sketch of the scene can be obtained
with even slight increasing of the obtained line segment match-
es.

The reason for the better matching results of our proposed
method on poorly-textured scenes with bigger w is as follows.
In poorly-textured scenes, only a small amounts of line seg-
ments can be detected. With a greater value of w, more line
segments can be regraded as adjacent line segments and used to
generate junctions and construct LJLs. More LJLs in poorly-
textured scenes often result in a larger group of initial LIL
matches, which improves the line matching results in the fol-
lowing three aspects. First, more line segments can be matched
along with LJL. Second, a generally preciser fundamental ma-
trix can be obtained, which helps both propagate LJL match (in
the second stage) and match line segments in individuals (in the
third stage). Third, the obtained LJL matches may distribute
in more 3D planes. The third stage of our method, matching
line segments in individuals, underlies the assumption that the
3D correspondences of the two line segments to be matched
lie in the same 3D plane lay by the 3D correspondences of
the two pairs of matched line segments brought by a pair of
matched LJLs. If two individual line segments whose 3D cor-
respondences lie in a 3D plane where none of the 3D corre-
spondences of matched LJLs exists, the two line segments can-
not be matched by our method. Thus, a larger group of initial

LJL matches can help to bring in more individual line segment
matches.

7. Conclusions

This paper has presented a hierarchical line matching method
in which line segments are first matched along with the struc-
tures called Line-Junction-Line (LJL) formed by two adjacent
line segments and their intersecting junction, and then matched
in individuals. While matching LJLs, a robust descriptor as
well as an effective strategy to deal with the possible scale
changes between images are proposed to obtain the initial LJL
matches, which are then refined and expanded by an effective
match-propagation scheme. Those left unmatched line seg-
ments are further matched by exploiting the local homographies
estimated from their neighboring LJL matches. The experimen-
tal results show the robustness of the proposed LJL descrip-
tor for matching LJLs and the good performance of the pro-
posed method under most kinds of image transformations and
in poorly-textured scenes. The superiorities of the proposed
method to the state-of-the-art line matching methods include
its robustness for more kinds of situations, the larger amounts
of correct matches, and the higher accuracy in most cases.
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