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Abstract

This paper presents an method that matches points and
line segments jointly on wide-baseline stereo images. In
both two images to be matched, line segments are extracted
and those spatially adjacent ones are intersected to gene-
rate V-junctions. To match V-junctions from the two ima-
ges, we extract for each of them an affine and scale in-
variant local region and describe it with SIFT. The putative
V-junction matches obtained from evaluating their descrip-
tion vectors are refined subsequently by the epipolar line
constraint and topological distribution constraint among
neighbor V-junctions. Since once a pair of V-junctions are
matched, the two pairs of line segments forming them are
matched accordingly. A part of line segments from the two
images are therefore matched along with V-junction match-
es. To get more line segment matches, we further match
those left unmatched line segments by the local homogra-
phies estimated from their adjacent V-junction matches. Ex-
periments verify the robustness of the proposed method and
its superiority to both some famous point and line segment
matching methods on wide-baseline stereo images. In addi-
tion, we also show the proposed method can make it easier
for 3D line segment reconstruction.

1. Introduction
Image matching is a vital procedure for many high-

level computer vision problems, such as 3D reconstruction,
structure from motion, object recognition, etc. A common
pipeline for image matching commences image feature ex-
traction, like feature points, line segments, edges, followed
by feature matching. An image matching method often tar-
gets to match only one type of image feature. If we want
to use several features combinatorially for higher level ap-
plications, like 3D reconstruction, several methods have to
be applied on the same images in order, which is less effici-
ent. Several line segment matching methods [1, 2, 3] ex-
ploit point matching results to help match line segment.
These methods first get point matches using the existing

methods and then match the extracted line segments by uti-
lizing the obtained point matches. A common problem for
these methods is that the line segment matching results rely
heavily on the obtained point matches.

Unlike those image matching methods which match
points or line segments separately, or those use point match-
ing results for line segment matching, this paper presents a
new algorithm that matches points and line segments joint-
ly through matching V-junctions generated by intersecting
adjacent line segments. This can be achieved because once
a pair of V-junctions from two images are matched, the cor-
responding relationship between the two pairs of line seg-
ments forming them are established accordingly. With this
idea, a foremost problem to be solved is how to match V-
junctions from two images. We propose to extract from
each V-junction a scale and affine invariant region and de-
scribe it with SIFT. Through evaluating the description vec-
tors of V-junctions from two images, we get some putative
V-junction matches, and some line segment matches. Be-
sides, we propose an effective strategy to refining the ob-
tained putative V-junction matches by exploiting the epipo-
lar line constraint and topological distribution constrain-
t among neighbor V-junctions. Another crucial problem
to be solved is how to match line segments that are spa-
tially separated with others and are not used to form V-
junctions, and can not therefore be matched along with V-
junctions. The solution we propose is to match them by esti-
mating local homographies from their neighboring matched
V-junctions. Experiments show that our method is more
robust than some famous point matching methods and can
produce more line segment matches than the state-of-the-
art line segment matching methods with higher accuracy in
most cases. In addition, we also show our result can facili-
tate to reconstruct 3D line segments.

2. Related Works

We present in this section first some point matching
methods and then some line segment matching methods re-
lated to our method.



2.1. Point Matching Methods

Point-based image matching has been widely investi-
gated and numerous methods have been proposed. The
widely acknowledged methods are those first extract invari-
ant local regions and then describe these regions with some
kind of descriptors. The most famous local region detectors
are maximally stable external regions (MSER) [4], edge-
based regions (EBR) [5], scale-invariant feature transform
(SIFT) [6], and a more recent one presented in [7], etc. In
[8], some of the most famous local region detectors were
compared. The same authors also gave a summarize and e-
valuation of local region description methods in [9]. A more
recent and comprehensive survey about local region extrac-
tion and description methods is in [10].

2.2. Line Segment Matching Methods

Line segment matching methods in existing literatures
can generally be classified into two categories: methods
that match line segments individually and those in groups.
Some methods matching line segments as individuals ex-
ploit the photometric information associated with indi-
vidual line segments, such as intensity [11, 12], gradi-
ent [13, 14, 15], and color [16] in the local regions around
line segments. All these methods underlie the assumption
that there are considerable overlaps between corresponding
line segments, which leads to the failure of these methods
when corresponding line segments share insufficient corre-
sponding parts. Other methods matching line segments as
individuals leverage point matches for line segment match-
ing [17, 1, 2]. These methods first find point matches using
the existing point matching methods, and then exploit in-
variants between coplanar points and line(s) under certain
image transformations to evaluate line segments from two
images. Line segments which meet the invariants are re-
garded to be in correspondence. A common disadvantage
of these methods is that they depend heavily on the point
matching results and once insufficient point matches were
found before, these methods will generate inferior results.
Methods matching line segments in groups are more com-
plex, but more constraints are available for disambiguation.
In [18], the stability of the relative positions of the endpoints
of a group of line segments in a local region under various
image transformations is exploited. This method is robust
in some challenging situations. However, the dependence
on the approximately corresponding relationship between
the endpoints of line segment correspondences leads to the
tendency of this method to produce false matches when sub-
stantial disparity exists in the locations of the endpoints.

A more common way to match line segments in groups
is to match them in pairs. Our method, and the two meth-
ods [3, 19] from which our method derives, adopt this
way. Compared with the two methods, our method makes
improvements in these aspects. When compared with

[19], first, a more robust and efficient (without the time-
consuming procedure of sampling the scales of local region-
s as that did in [19]) way is proposed to match V-junctions
of line segments from two images. We extract from each
junction an affine and scale invariant region and describe
it with SIFT. Second, an effectively iterative scheme is
proposed to refine the obtained putative V-junction match-
es. Third, we propose to match individual line segments
which can not be matched along with V-junctions by us-
ing the local homographies estimated from their neighbor-
ing matched V-junctions. Both the V-junction refinement
procedure and the individual line segment matching proce-
dure are absent in [19]. Our method is therefore more robust
and can get more line segment matches. When compared
with [3], on the one hand, rather than relying on the point
matches obtained by some external point matching meth-
ods to provide the global and local constraints for disam-
biguation, our method is self-sustaining. It generates point
matches itself to help match line segments. On the other
hand, though both our method and [3] use local homogra-
phies for matching line segments, the major difference lies
in the way of estimating the local homographies (with al-
so some minor differences on applying them). In [3], a
local homography is estimated from at least 4 pairs of as-
sumed coplanar point correspondences obtained by SIFT,
while in our method, a local homography is estimated only
from a pair of V-junction correspondences and the funda-
mental matrix. Both of them are obtained by our method in
previous stages and can therefore always be guaranteed.

The remaining parts of this paper are organized as fol-
lows. Section 3 presents the ways we generate, describe and
matching V-junctions. The strategies of matching those left
individual line segments and 3D line segment reconstruc-
tion are introduced in Section 4 and Section 5, respectively.
The experimental results are shown in Section 6 and the
conclusions are drawn in Section 7.

3. V-Junction Matching
We present the ways of generating, describing and

matching V-junctions orderly in this section.

3.1. V­Junction Generation

Only the intersecting junctions of 2D line segments
whose 3D correspondences are coplanar in the scene are
stable with camera motions and can find their 2D corre-
spondences in other images. Therefore, we need to deter-
mine the 2D line segments whose 3D correspondences are
coplanar in 3D space to generate junctions. However, it is
hardly possible to determine the 3D coplanarity of 2D line
segments only from a image without the projective infor-
mation of the camera. But adjacent line segments possess
a higher probability to be coplanar in 3D space due to the
spatial proximity. So, it is an alternative way to intersect
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Figure 1: Constructing V-junction: (a) Finding 2D line seg-
ments whose 3D correspondences are possibly coplanar in
3D space; (b) Two situations where the two line segments
are used to construct V-junctions.

neighboring line segments to get reliable junctions. We use
a similar method as that presented in [19] to generate junc-
tions. Refer to Figure 1(a), for a line segments l1, we define
the rectangle (filled in yellow in the figure), R, as its af-
fect region, which centers at the midpoint of l1 and has the
width of |l1|+2w and the height of 2w, where |l1| denotes
the length of l1 and w is a user-defined parameter. Any line
segment satisfying the following two conditions is assumed
to be coplanar with l1 in 3D space. First, at least one of the
two endpoints drops in R. Second, its intersection with l1
also drops in R. Under these two conditions, in Figure 1(a),
only l2 is accepted to be coplanar with l1 in 3D space.

There exist two situations where two line segments as-
sume to be coplanar in 3D space, as shown in Figure 1(b).
In the left case where the intersection lies on one of the two
line segments (not on their extensions), two V-junctions,
ÂOC and B̂OC are constructed. In the right case where
the intersection lies on the extensions of the two line seg-
ments, only one V-junction, ÂOC are constructed.

3.2. V­Junction Description

To match the constructed V-junctions from two images,
we first exact from each V-junction a scale and affine-
invariant region by exploiting the relationship between the
V-junction and the two line segments forming it and other
neighbor line segments, and then describe the region with
SIFT descriptor.

For a V-junction, we detect from each of the two line
segments forming it a stable point which has the largest
intensity change among all points along the line segment.
Our idea derives from the edge-based region (EBR) detec-
tor proposed in [5], which exploits features of edges to de-
tect invariant regions. We exploit features of line segments
to extract invariant regions for V-junctions. We incorporate
the relationship between neighbor line segments to make
the extracted invariant regions less sensitive to noise and lo-
cation imprecision of line segments.

Suppose l is one of the two line segments forming a V-
junction, V . If it was used to construct V-junctions besides
V , as the line segment AB shown in Figure 2(a), the junc-
tion points are selected as the candidates of the stable point.
This is reasonable because line segments lie on region bor-
ders, and if l meets a line segment, it likely reaches a region

(a) (b) (c) (d)

Figure 2: An illustration of the scale and affine invariant lo-
cal region extraction and description procedures of our pro-
posed method: (a) Finding stable points S1 and S2 for line
segments AB and CD in the V-junction B̂OD; (b) The
extracted local region; (c) The expanded local region; (d)
Describing the normalized local region with SIFT.

Figure 3: An example of finding scale and affine invariant
local regions on two stereo images [22] with severe view-
point change. The parallelograms drawn in different colors
are the extracted local regions. Only a subset of all paral-
lelograms are shown in the two images for better interpre-
tation.

border. The junction of l and the line segment it meets is
very possibly to be a stable point. On the other hand, if l
was not used to construct any V-junction besides V , as the
line segment CD shown in Figure 2(a), all points on l are
regarded as candidates stable points. In this way, we col-
lect a set of candidate stable point C = {Si}Ni=1, where N
is the number of candidates. The best candidate is the one
which has the most abrupt intensity change along the line
segment. For a candidate Si, we collect 5 points on both
its sides along l and gather two sets of the pixel intensities,
I1(Si) and I2(Si). The intensity change of Si is calculated
as: Id(Si) = |median(I1(Si))−median(I2(Si))|, where
median(·) means the median value of the elements in a set.
The Si with the maximal value of Id(Si) is selected as the
final stable point S. Median value of a set of intensities is
used to compute the intensity change of a candidate point
because this can reduce the influence of noise among the
sets.

After finding a stable point for both line segments form-
ing a V-junction as S1 for the line segment AB and S2 for
the line segment CD shown in Figure 2, the parallelogram
determined by these two stable points and the junction is i-
dentified as the invariant region for the V-junction as shown
in Figure 2(b). Figure 3 shows the extracted invariant re-
gions by our method on two images with different sizes and



great viewpoint change. In this extreme case, some (nearly)
identical regions are extracted in the two images.

Since most signal variations exist near line segments,
we expand the extracted parallelogram around the junction
point into a larger one, as shown in Figure 2(c). Next, we
normalize the expanded region into a square through affine
transformation to make it affine-invariant. Finally, we de-
scribe the square with SIFT. The size of the square is sug-
gested to be 41×41 in [8]. But we found in our case it pro-
duced better matching results when the size of the square is
set as 21×21.

3.3. V­Junction Matching

To match V-junction from two images, the general way
is to evaluate the Eucliean distances between their descrip-
tion vectors. But since the two line segments forming a V-
junction locate in a local region, the crossing angle of them
should vary at a small range under most image transforma-
tions. Let (V,V ′) be a pair of V-junctions to be matched and
(θ, θ′) be the crossing angles of the two pairs of line seg-
ments. If (V,V ′) is a correct match, the difference between
θ and θ′ should be less than a small threshold ϵ1 (set as 30◦

in this paper), i.e., |θ− θ′| < ϵ1. This simple constraint can
help discard many false candidates before evaluating their
description vectors and thus contributes to better matching
results.

There inevitably exist false ones among the putative V-
junction matches obtained after the above procedure. We
refine them by the following two ways. First, we estimate
the fundamental matrix for the two images using the pu-
tative V-junction matches and keep only the inliers. This
epipolar line constraint can filter out those false matches
that lie near the corresponding epipolar lines. We use an-
other effective way to further refine the obained V-junction
matches by exploiting the stability of the topological distri-
bution of a group of V-junctions in a local region.

Refer to Figure 4, for a V-junctions Vc, the two line
segments forming it and their reverse extensions form a
coordinate-like structure. Its neighbors distribute in the four
quadrants. This topological distribution is relatively stable
with image transformations. i.e., after some kinds of image
transformations, while Vc is transformed into V ′

c, its neigh-
bors should change consistently. To apply this constraint for
refining V-junction matches, for the candidate V-junction
match, (Vc,V ′

c), we collect the K (K = 10 used in this
paper) nearest matched V-junctions as Ñ = {Vi}Ki=1 and
Ñ ′ = {V ′

j}Kj=1 for Vc and V ′
c, respectively. If (Vc,V ′

c) is a
correct match, the following two conditions must be satis-
fied. The first one is that there should exist a sufficient large
proportion (0.5 used in this paper) of correspondences in Ñ
and Ñ ′. Second, the matches in Ñ and Ñ ′ that have its two
V-junctions lying in the same quadrants of the coordinates
formed by Vc and V ′

c should account for a great ratio of the

transform

Figure 4: An illustration of the topological distribution of a
V-junction Vc and its neighbor V-junctions before and after
image transformations.

total matches; the ratio is set as 0.8 in this paper.
With the guidance of the epipolar line geometry between

the two images and topological distribution constraint a-
mong neighboring V-junctions, the V-junctions from the
two images can be matched exhausted by alternatively
adding new matches and deleting false ones until no more
match can be added.

4. Individual Line Segment Matching
Line segments that have not been matched along with V-

junctions will be further matched as individuals. They are
first grouped according to those matched V-junctions, and
then matched in corresponding groups based on the local
homographies estimated from the pairs of V-junction corre-
spondences in corresponding groups.

4.1. Local Homography Estimation

We have assumed the two line segments forming a V-
junction are coplanar in 3D space. Therefore, a V-junction
match generates two coplanar line segment matches, which
can be used to estimate a local homography with the com-
bination of the estimated fundamental matrix.

A planar homography H is determined by eight degrees
of freedom, necessitating 8 independent constraints to find
a unique solution. However, when the fundamental ma-
trix F between two images is known, then H⊤F is skew-
symmetric [23], i.e.,

H⊤F+ F⊤H = 0. (1)

The above equation gives five independent constraints on
H, and the other three are required to fully describe a ho-
mography. One line match provides two independent con-
straints [24], resulting in that the system is over-constrained
since two coplanar line matches exist in our case.

The homography induced by a 3D plane π can be repre-
sented as

H = A− e′v⊤, (2)

where the 3D plane is represented by π = (v⊤, 1) in the
projective reconstruction with camera matrices C = [I|0]
and C′ = [A|e′]. The homography maps a point in one
2D plane to another 2D plane. For a line segment match



(l, l′), suppose x is an endpoint of l, the homography maps
it to its corresponding point x′ as: x′ = Hx. Since l and l′
correspond with each other, x′ must be a point lying on l′,
that is l′⊤x′ = 0. Therefore, we obtain

l′
⊤
(A− e′v⊤)x = 0. (3)

Arranging the above equations, we finally get

x⊤v =
x⊤A⊤l′

e′⊤l′
, (4)

which is linear in v. Each endpoint of a line segment in
a line match provides an equation, and two line segment
matches totally provide four constraint equations. A least-
square solution of v can be obtained from the four equa-
tions. The local homograpy H is then computed from
Eq. (2).

4.2. Individual Line Segment Matching

Let M = {(Vm,V ′
m)}Tm=0 be the set of T V-junction

matches from two images, where (Vm,V ′
m) denotes the

m-th V-junction match found before. Let K = {li}Mi=1

and K′ = {l′j}Nj=1 be the two groups of individual line
segments, which have not been matched before, from the
two images, respectively. For each individual line segment
li ∈ K or l′j ∈ K′, we find four of its nearest matched
V-junctions and assign it into the corresponding 4 groups.
After that, any matched V-junction collects zero to multiple
individual line segment(s). Individual line segments col-
lected by corresponding V-junctions from two images are
assessed and matched separately.

Suppose l and l′ are a pair of individual line segments
to be evaluated and they are collected by the matched V-
junctions, V and V ′, respectively. We first check whether
the direction difference of them is consistent with the di-
rection differences of the two pairs of matched line seg-
ments brought by V and V ′. The directions of adjacent
line segments should change similarly under image trans-
formations. Let σ1 be the mean value of the direction dif-
ferences of the two pairs of line correspondences brought
by V and V ′ and σ2 be the direction difference of l and
l′. If |σ2 − σ1| < ϵ2, where ϵ2 is a user-defined thresh-
old set as 20◦ in this paper, we accept (l, l′) temporarily
and take it for further evaluation. Next, we test (l, l′) again
by using the brightness constraint [16], which requires the
brighter side of two corresponding line segments should be
the same. The brighter side of a line segment refers to the
side where the average intensity of pixels in a small profile
along the line segment is greater than the other side.

If (l, l′) satisfies the above constraints, we then evaluate
it by the local homography H estimated from V and V ′. We
map l and l′ by H, generating their correspondences lh for l
and l′h for l′, respectively. The average of the four distances,

homography

Figure 5: An illustration of reconstructing 3D line segment
by reconstructing the corresponding endpoints of line seg-
ments through exploiting the local homography.

including the perpendicular distances of two endpoints of l′h
to l and the perpendicular distances of the two endpoints of
lh to l′, is defined as the mapping error of (l, l′), which is
used to measure the similarity between l and l′. After that,
there may exist cases that one line segment in one image is
matched with several line segments in the other image. We
select the pair with the minimal mapping error as the correct
match and reject others.

5. 3D Line Segment Reconstruction

Traditional way to get 3D line segments is to triangulate
corresponding line segments from multiple views [21, 20,
26], which is often complex and inefficient. We present here
a simple but effective line segment reconstruction method
by taking advantage of the result obtained by our image
matching method. Refer to Figure 5, V and V ′ are two V-
junctions in correspondence identified by our method. They
are formed by the pairs of line segments (lm, ln) and (l′m,
l′n), respectively. (l, l′) is a pair of corresponding individu-
al line segments matched by using the strategies presented
in Section 4 when they are grouped into V and V ′, respec-
tively. Since we can estimate the local homography from
V and V ′ and this local homography can establish point-
to-point correspondence, we can transfer reconstructing 3D
line segments into reconstructing their endpoints. As shown
in Figure 5, we find in the second plane p′ the correspon-
dence of each endpoint of line segments in the first plane
p, and triangulate corresponding endpoints to get 3D line
segments in scene plane P.

6. Experimental Results

We present in this section first how we fixed the para-
meters of the method and then the performance evaluation
of our local region detector, followed by the point and line
segment matching results. At last, we give an example 3D
line segment reconstruction result obtained by our method.
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Figure 6: The changes of the average repeatability with dif-
ferent values of the parameter w.

6.1. Parameters Setting

Our proposed method has some parameters, but only the
parameter w is crucial which determines how adjacently
two line segments lie that they are used to intersect to form
a junction. The remaining parameters are used to strengthen
some constraints and the fluctuations of their values make
no great differences on the matching results. We fixed them
after some initial experiments, and their defaulted values
were presented in the preceding text. Here, we present only
how we fixed w.

A bigger w will result in more V-junctions, and more
resultant V-junction matches. However, excessive V-
junctions, especially when many of them can not find their
correspondences in another group of V-junctions, hamper
the matching since more interferences are involved. Be-
sides, both more computation time and memory are re-
quired to match them. We adopted the method introduced
in [8] by calculating the repeatability of the extracted lo-
cal regions for V-junctions from different images to select a
proper value for w. We tested on the famous datasets, graf-
fiti, leuven, boat, bikes and ubc [8], in which the images are
related by global homographies. We sampled w from 5 to
30 at the step of 5 and calculated the average repeatability
for all image pairs with each w. The change of the average
repeatability along with w is shown in Figure 6. We can ob-
serve from this figure that the repeatability curve increases
when w is less than 20, and is stable until w is bigger than
25, where the curve begins to drop. Thus, both 20 and 25
are proper values for w. To obtain less junctions and reduce
the computation time, w = 20 was selected in this paper.

6.2. Evaluation of the Local Region Detector

One of the main contributions of this paper is the lo-
cal region detector for V-junctions. We evaluated it using
the same strategy presented in [8] by calculating the re-
peatability of the extracted local regions in different images.
We adapted our detector into the evaluation framework pro-
posed in [8] and compared the repeatability obtained by our
detector with those embedded detectors in the framework.

bikes boat leuven graffiti ubc
Ours 3 4 4 2 6

Hessian-affine 1 1 2 5 1
Harris-Affine 4 3 3 6 2

MSER 5 2 1 1 3
IBR 6 6 5 3 5
EBR 2 5 6 4 4

Salient 7 7 7 7 7

Table 1: The relative ranks of our detector compared to oth-
er detectors with respect to the repeatability of the extracted
local regions on some datasets established in [8].

(a) (b) (c) (d) (e) (f) (g)
SIFT 9 6 132 60 2 65 6
Ours 200 321 585 206 80 169 137

Table 2: The numbers of total point matches obtained by our
method and SIFT on the 7 image pairs shown in Figure 8.

Table 1 shows the relative ranks our detector compared to
other detectors on some of the established datasets. Note
that we got the relative ranks shown in this table when we
set the overlap error parameter as 20%. The relative ranks
may change slightly with different overlap error parameter.
In this table, 1 represents the highest repeatability while 7
represents the lowest repeatability. As we can see from this
table, though our detector is not the generally best detector,
it does have some advantages over some detectors. Besides,
our detector is specially designed to get V-junction match-
es. When matching V-junctions, apart from evaluating their
description vectors, the important crossing angle constra-
int (see Section 3.3) can be applied to help disambiguation.
Our local region detector, when combined with this addi-
tional constraint, can be very discriminative for matching
V-junctions, as shown in the subsequent section.

6.3. Point Matching Results

We used the seven image pairs, (a)∼(g) shown in Fi-
gure 8, to evaluate our method for point matching. All these
image pairs were collected from publicly available dataset-
s [18, 27, 8, 15] and are characterized by some extreme
image transformations, namely, viewpoint, scale and rota-
tion changes, non-uniform light change; or poorly-textured
scene (image pair (e)). We tested on these extreme ima-
ge pairs to show the robustness of our methods. For com-
parison, we also show the corresponding results obtained
by SIFT1. The visualized results are shown in the first two
columns of Figure 8 and the corresponding statistical results
are shown in Table 2. We can obverse that our method has
an overwhelming advantage on the number of the obtained
total matches on all these image pairs. Though we did
not count the numbers of correct matches among the total
matches, which is tedious and error-prone, the much more

1The implementation is from http://www.cs.ubc.ca/ lowe/keypoints/



20 42 8 42 31 11 249 26

129

67

12

87

8

147 144

183
163

91
113

89

0

50

100

150

200

a b c d e f g

Total Matches

SMSLD LPI Ours

4.2 1.6 1.5 2.4 3.5 2.8
1.4

153.0

19.8 32.1

110.7

10.1

165.1

11.27.8 3.8 5.1 2.2
1.0

6.0 1.3
0.0

40.0

80.0

120.0

160.0

200.0

a b c d e f g

Running Time(s)

SMSLD LPI Ours

0.0
23.8

0.0

80.9

87.1

0.0

37.5
0.0

53.8

97.7 94.0

83.3

95.2

75.0

92.5 90.3

96.7 87.1

87.9

91.2

76.4

0.0

20.0

40.0

60.0

80.0

100.0

a b c d e f g

Precision(%)

SMSLD LPI Ours

Figure 7: Line segment matching results obtained by our method, LPI [2] and SMSLD [15] on the 7 image pairs shown in
Figure 8. We evaluated the three methods by comparing the three measures: the total number of matches, the precision of the
obtained matches and the running time.

Figure 8: The visualized point matching and line segment matching results of our method and other methods on 7 repre-
sentative image pairs. These images pairs will be referred as (a)∼(g) in order for later use. The first two columns visualize
the point matching results obtained by our method and SIFT, respectively. For better accessing the obtained point matching
results, for each image pair, we drawn the optical flow of the matched points in the first image and label two corresponding
points from the two images with the same number. The corresponding statistical results are listed in Table 2. The last two
columns visualize the line segment matching results obtained by our method and LPI [1], respectively. Two correspond-
ing line segments from two images are drawn in the same color and are labeled with the same number at the middle. The
corresponding statistical results are listed in Figure 7. Please zoom in for better interpretation of the results.

consistent optical flows shown in Figure 8 of the matched
points in the first images for our method than that of SIFT
indicates the accuracies of our results are much higher than
SIFT. Thus, compared with SIFT, our method outperforms

both in the number of the total correct matches and the
accuracy. This proves the robustness and effectiveness of
our proposed local region detector, matching strategy, and
match-refinement strategies.



Figure 9: 3D line segment reconstruction results obtained by our method and the method presented in [26]. (Left): One of the
used images. (Middle): 3D line segment reconstruction result obtained by our method using the first two images of the total
six images. (Right): 3D line segment reconstruction result obtained by the method presented in [26] using all six images.

6.4. Line Segment Matching Results

We also compared our method with some state-of-the-
art of line segment matching methods. Two methods with
the implementations publicly available were used for the
comparison. They are Line-Point-Invariant (LPI) [2] and
SMSLD [15]. To make the comparison convincing, we fol-
lowed the two methods and used LSD [25] for line segment
extraction. The comparative results are shown in Figure 7
and the visualized the results obtained by our method and
LPI are shown on the last two columns in Figure 8. We can
observe from Figure 7 that our method has an overwhelm-
ing advantage on the number of total matches over the other
two methods, and achieves the highest accuracies for most
of the image pairs. It is remarkable that on image pairs (a),
(c) and (f), the accuracies of the results obtained by SMSLD
are 0, which means all its obtained matches are wrong. This
situation also occurs for LPI on image pair (a) that all the
obtained nine matches are wrong. This is because, as men-
tioned before, LPI relies on the point matches obtained by
SIFT, but SIFT could not get enough correct point matches
on this image pair. The same reason also explains why LPI
obtained line segment matches with low accuracies in ima-
ge pair (b), (e) and (g), where SIFT get inferior results, as
shown in the first two columns of Figure 8 and Table 2. As
to running time, SMSLD is slightly better than our method,
and much better than LPI.

6.5. Line Segment Reconstruction Results

Line segment reconstruction is not the main focus of this
paper. We present here only a sample result we have ob-
tained to show the feasibility of our proposed method pre-
sented in Section 5. We will keep working on this area and
report our algorithm in the future publications. The sample
result is shown in Figure 9. There are six images for the
scene, and we used only the first two to generate our result.

As we can see, the outline of the scene is well reconstructed
by our method and our result is just slightly inferior to that
obtained by [26] itself, which were obtained from all the six
images. It is sure that a better result can be obtained when
more images are employed. We will extend our method to
multiple views in the near future.

7. Conclusions
We have introduced in this paper a new image matching

method that can get point matches and line segment match-
es jointly on wide-baseline stereo images by exploiting V-
junctions of adjacent line segments. To match V-junctions
from two images, we propose to extract from each of them
an affine and scale invariant local region and describe it
with SIFT, followed by an effective matching strategy. For
those line segments that can not be matched along with V-
junctions, we propose to match them by the local homo-
graphies estimated from their adjacent V-junction matches.
Comparisons with both the state-of-the-art point and line
segment matching methods verify the robustness and supe-
riority of the proposed method. In addition, we also show
our method can facilitate 3D line segment reconstruction.
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