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This paper introduces a new system for reconstructing 3D scenes from Line Segments (LS) on images. A
new LS matching algorithm and a novel 3D LS reconstruction algorithm are incorporated into the system.
Two coplanar cues that indicates image LSs are coplanar in physical (3D) space are extensively exploited in
both algorithms: (1) adjacent image LSs are coplanar in space in a high possibility; (2) the projections of
coplanar 3D LSs in two images are related by the same planar homography. Based on these two cues, we
efficiently match LSs from two images firstly in pairs through matching the V-junctions formed by adja-
cent LSs, and secondly in individuals by exploiting local homographies. We extract for each
V-junction a scale and affine invariant local region tomatch V-junctions from two images. The local homo-
graphies estimated from V-junction matches are used to match LSs in individuals. To get 3D LSs from the
obtained LS matches, we propose to first estimate space planes from clustered LS matches and then back-
project image LSs onto the space planes. Markov Random Field (MRF) is introduced to help more reliable
LS match clustering. Experiments shows our LS matching algorithm significantly improves the efficiency
of state-of-the-art methods while achieves comparable matching performance, and our 3D LS reconstruc-
tion algorithm generates more complete and detailed 3D scene models using much fewer images.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Image-based 3D reconstruction is a widely studied research
field and researchers have developed some remarkable works
through exploiting feature points extracted from images
(Agarwal et al., 2011; Furukawa and Ponce, 2010; Snavely et al.,
2006, 2008; Wu, 2013). However, objects in man-made scenes
are often structured and can be outlined by a bunch of Line Seg-
ments (LS). It is therefore advantageous to get the 3D wire-frame
model of a scene by exploiting LSs on images. For example, for
the house shown in Fig. 1(a), the 3D LS reconstruction method to
be introduced in this paper generates the 3D model shown in
Fig. 1(b) using only two images. It is easy to recognize the house
from this 3D model, but hardly possible to do so from the extre-
mely sparse point clouds obtained by some point based 3D recon-
struction methods. Some works (Hofer et al., 2014; Sinha et al.,
2009) also proved that 3D modeling by exploiting both feature
points and LSs on images resulted in more accurate and complete
results.
Despite of the above benefits of exploiting LSs for 3D scene
reconstruction, it is yet hard to reliably reconstruct 3D LSs. The
foremost reason is that LSs are difficult to be matched, such that
even several 3D LS reconstruction algorithms (Hofer et al., 2013;
Jain et al., 2010; Ramalingam and Brand, 2013) skipped LS match-
ing and directly reconstructed extracted image LSs. The main cause
for the difficulties of matching LSs is the absence of point-to-point
correspondence between corresponding LSs. The endpoints of cor-
responding LSs do not reliably correspond with each other, and a
short LS from one image is allowed to correspond to a long one
from another image. This fact makes it unreliable to exploit some
local region description based methods, which have been proved
to be very effective in feature point matching, for LS matching
because it is hard to extract invariant local regions around LSs.

Another factor complicating 3D LS reconstruction is the unsta-
bleness and low location accuracy of extracted LSs. LSs are the
straight fittings of curve edges detected on images so that some-
times a 3D edge would result in two straight fittings that are not
precisely corresponding on two images. The imprecise correspon-
dence of corresponding LSs makes it difficult to reliably reconstruct
their 3D correspondences. For example, to reconstruct 3D LSs in
the scene shown in Fig. 1(c), all of which can roughly be regarded
to lie on one space plane, when using traditional way to triangulate
(forward intersect) LS correspondences identified from two
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Fig. 1. Examples showing the benefits and difficulties of exploiting LSs on images for 3D reconstruction. (a) A multi-planar scene and the extracted LSs. (b) The reconstructed
3D LSs for the scene (a) obtained by the proposed 3D LS reconstruction method using two images. Different colors are used to differentiate 3D LSs lying on different space
planes. (c) An image of a roughly planar scene and the extracted LSs. (d) The 3D LS reconstruction result for the scene shown in (c) by triangulating LS correspondences
identified from two images. (e) The 3D LS reconstruction result obtained by our proposed algorithm after solving the problem existing in (d). The front view and profile of the
obtained 3D model are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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images, the 3D LSs shown in Fig. 1(d) are obtained. As we can see, a
big fraction of the 3D LSs are incorrectly reconstructed.

We solve the aforementioned problems by exploiting the fol-
lowing two coplanar cues that indicate the coplanarity image LSs
in space.

C1: Adjacent image LSs are coplanar in space in a high
possibility.

C2: The projections of coplanar space LSs in two images shall be
related by the same planar homography.

As for the no point-to-point correspondence problem in LS
matching, based on C1, we intersect adjacent LSs to form
V-junctions in both images to be matched. Since adjacent image
LSs are very likely to be coplanar in space and the intersecting
junctions of coplanar space LSs are projectively invariant with
camera motions, a portion of V-junctions constructed in one image
would reappear in the other image. Through matching V-junctions
from the two images, the LSs forming the obtained V-junction
matches are matched accordingly. While matching V-junctions,
we propose to extract for each V-junction a scale and affine invari-
ant local region and describe it with SIFT. For LSs unable to be
matched along with V-junctions (due to that they are not adjacent
enough to others as to be used to form V-junctions) based on
C2, we use local homographies estimated from their adjacent
V-junction matches to evaluate their correspondence.

When reconstructing 3D LSs, based on C2, we group LS matches
obtained from two images according to a set of homographies,
such that LS matches in each group are related by the same homog-
raphy, which is induced by the space plane where the 3D LSs cor-
responding to the LS matches in the group lie. The space plane for
each LS matches group can then be recovered from the 3D LSs
obtained by triangulating all the pairs of LS correspondences. As
the space plane being recovered, the 3D LSs corresponding to LS
matches in the group can be obtained easily by back-projecting
LSs from one image onto the space plane. To reduce the incidence
of incorrect LS match grouping, we introduce coplanar cue C1 into
LS match grouping, frame it to Markov Random Field (MRF) and
solve it as a multi-label optimization problem. Fig. 1(e) shows
our 3D LS reconstruction result for the scene shown in Fig. 1(d).
It is easy to observe that our algorithm has successfully remedied
the problem existing in Fig. 1(d).

In summary, the novelties of this paper are threefold: First, we
propose to match V-junction from two images by extracting for
each of them a scale and affine invariant local region. Second, we
propose a new solution for solving the ambiguities in 3D LS recon-
struction through LS match grouping, space plane estimation and
image LS back-projection. Third, we formulate to solve the LS
match grouping problem by solving a multi-label optimization
problem.

The rest of this paper is organized as this: Section 2 presents rel-
evant works to ours. The proposed LS matching algorithm and 3D
LS reconstruction algorithm are introduced in Sections 3 and 4,
respectively. Experimental results are reported in Section 5, and
conclusions are drawn in Section 6.
2. Related works

We give in this section a brief introduction of existing LS match-
ing and 3D LS reconstruction methods.

2.1. Line segment matching

LS matching methods in existing literatures can generally be
classified into two groups: methods that match LSs in individuals
and those in groups. Some methods matching LSs in individuals
exploit the photometric information in the local regions around
LSs, like intensity (Baillard et al., 1999; Schmid and Zisserman,
1997), gradient (Verhagen et al., 2014; Wang et al., 2009b; Zhang
and Koch, 2013), and color (Bay et al., 2005). All these methods
underlie the assumption that there are considerable overlaps
between corresponding LSs, which might lead to the failure of
these methods when corresponding LSs share insufficient overlap-
ping parts.

Other methods matching LSs in individuals leverage point
matches for LS matching (Chen and Shao, 2013; Fan et al., 2010,
2012; Lourakis et al., 2000). These methods first find point matches
using the existing point matching methods, and then exploit geo-
metric invariants between coplanar points and line(s) under cer-
tain image transformations to evaluate LSs from two images. The
LSs which meet the invariants are regarded to be in correspon-
dence. A common disadvantage of these methods is that they
depend heavily on point matching results so that once insufficient
point matches were found before, these methods would generate
inferior results.

Methods matching LSs in groups are more complex, but more
constraints are available for disambiguation. Wang et al. (2009a)
exploited the stability of the relative positions of the endpoints
of a group of LSs in a local region under various image transforma-
tions to describe and match LS groups. This method is robust in
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some challenging situations, but its dependence on the approxi-
mately corresponding relationship between the endpoints of LS
correspondences leads to its tendency to produce false matches
when substantial disparity exists in the locations of the endpoints
of corresponding LSs.

A more common way to match LSs in groups is to match them
in pairs (Alshahri and Yilmaz, 2014; Kim et al., 2014; Li et al.,
2016b; Ok et al., 2012b). For two LS pair correspondences from
two images, P l ¼ ðlm; lnÞ and P0

l ¼ ðl0m; l0nÞ for instance, suppose the
intersecting junctions of lm and ln is j, and j0 for l0m and l0n, a series
of discriminative constraints were exploited by existing methods
to match them. Commonly used constraints include: (1) Cross
angle constraint. Since lm and ln (l0m and l0n as well) are in a local
region, their cross angle should be of little difference with that of
l0m and l0n. (2) Epipolar line constraint. j and j0 are point correspon-
dences so that they should meet epipolar line constraint. (3) Local
region similarity constraint. The local region determined by lm; ln
and j, should be similar to the local region determined by l0m; l

0
n

and j0, in light of their photometric characteristics (e.g., pixel inten-
sity and gradient). Algorithms exploiting this constraint focus on
how to give discriminative descriptions of the local regions. (4)
Homography constraint. Since lm and ln (l0m and l0n as well) are in
a local region, there is a high possibility that they are coplanar in
physical space. In this case, there exists a planar homography that
establishes point-to-point correspondence to help match LSs. How
to estimate the planar homography is the crux in applying this
constraint. The above constraints are not exclusive with each other,
and are often assembled to produce a powerful LS matcher.

Our proposed LS matcher also matches LSs in pairs and employs
all the four commonly used constraints mentioned above. The dif-
ferences between our method with others in this category are as
follows. When using the local region similarity constraint, Ok
et al. (2012b) used spatiograms (a measure encoding both the color
and coordinate information of pixels in a region) to measure the
similarity of two quadrilateral regions; Kim et al. (2014) rectified
local regions to squared patches and used normalized cross corre-
lation (NCC) as a similarity measure for the patches; we instead
find scale and affine invariant local regions around intersecting
junctions and use SIFT to describe the extracted local regions. Since
our local region extractor is very robust and SIFT is a powerful local
region descriptor, our strategy is very effective in using this con-
straint. When applying the homography constraint, Alshahri and
Yilmaz (2014) and Sun et al. (2015) estimated the planar homogra-
phy between two local regions using adjacent point matches,
which were provided by external point matching methods. But in
our algorithm, the planar homography between two local regions
is estimated from their adjacent LS pair match, which is obtained
previously by our method and can therefore always be guaranteed.
In this perspective, our algorithm is self-sustaining and indepen-
dent. Our LS matcher is a direct promotion of a recent one, referred
as LJL (Li et al., 2016b). We targets to improve the efficiency of LJL.
We avoid to deal with scale changes among images by the time-
consuming scale simulation procedure in LJL, but instead by
extracting for each junction generated in the original images a
scale and affine invariant local region. We conduct this local region
extraction procedure only in the original images and hence
tremendously improves the matching efficiency of LJL.

2.2. 3D line segment reconstruction

We divide existing 3D LS reconstruction methods into two cat-
egories: methods that require LS matching before reconstruction
and those do not. Many methods in the former category focus on
the exploitation of different mathematical representations for a
3D line to establish the projective relationship between a 2D line
and its 3D correspondence, which is not as explicit as that for
points (Hartley and Zisserman, 2003). These 3D line representa-
tions include plücker coordinates (Bartoli and Sturm, 2005;
Martinec and Pajdla, 2003; Přibyl et al., 2015), pair of points
(Baillard et al., 1999; Habib et al., 2002; Hartley and Zisserman,
2003; Ok et al., 2012a; Smith et al., 2006; Werner and Zisserman,
2002), pair of planes (Hartley and Zisserman, 2003), a unitary
direction vector and a point on a line (Taylor and Kriegman,
1995), the intersections of a line with two orthogonal planes
(Spetsakis and Aloimonos, 1990), and a recent one, Cayley repre-
sentation (Zhang and Koch, 2014). With these representations,
researchers proposed various methods for reconstructing 3D lines
and/or estimating camera parameters. Some methods in the first
category aim to reconstruct 3D LSs in certain types of scenes, like
scenes meeting Manhattan World assumption (Kim and
Manduchi, 2014; Schindler et al., 2006), piecewise planar scenes
(Sinha et al., 2009) and poorly textured scenes (Bay et al., 2006).
The prior knowledge of the scenes decreases reconstruction uncer-
tainties and often leads to remarkable results.

Some recent algorithms in this area attempted to free the
reconstruction procedure from the heavy dependence on the LS
matching procedure because it is sometimes hard to get reliable
LS correspondences in some kinds of scene types, such as poorly
textured indoor environments and scenes containing wiry struc-
tures (e.g., power pylons (Hofer et al., 2013)). Most of these meth-
ods adopt the strategy of first generating a set of 3D hypotheses for
each extracted LS, either by sampling the depths of the endpoints
of 3D LSs to camera centers (Jain et al., 2010), or by triangulating
gross LS correspondences obtained after enforcing some soft con-
straints on the extract LSs (Hofer et al., 2013, 2014, 2016). Next,
they validate these hypotheses by projecting them back to images.
The algorithm proposed by Ramalingam and Brand (2013) is able
to obtain 3D LSs with an unknown global scale from a single image
capturing a Manhattan World scene. It is possible to do so because
LSs in this special type of scenes can only distribute in three
orthogonal directions, hence dramatically decreasing the degrees
of freedom when to reconstruct the scene LSs.

Our 3D LS reconstruction algorithm belongs to the first category
and we focus only on 3D LS reconstruction. The camera parameters
are obtained by some external camera calibration methods, or
some existing SFM pipelines. The most similar method to ours is
proposed by Kim andManduchi (2014), who also focused on recov-
ering planar structures of a scene from LSs. But their method is
confined to be only applicable for structured scenes which meet
Manhattan World assumption, while our method is a more general
one and do not underlie this pretty strong assumption. Besides,
their method exploits parallel LSs to determine their spatial copla-
narity, while our method instead uses planar homographies.
3. Line segment matching algorithm

Our LS matching method matches LSs from two images in two
forms, firstly in pairs by matching their intersecting V-junctions,
and secondly in individuals through exploiting local homogra-
phies. This section presents the two LS matching forms in order.

3.1. V-junction matching

We present the ways of generating, describing and matching
V-junctions orderly in this part.

3.1.1. V-junction generation
Only the intersecting junctions of 2D LSs whose 3D correspon-

dences are coplanar in space are invariant with camera motions
and can possibly find their 2D correspondences in other images.
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Based on coplanar cue C1 we stated in the introduction section, we
intersect adjacent LSs to get repeatable junctions. Refer to Fig. 2(a),
similar to the strategy of Kim et al. (2014), for a LS l1, we define the
rectangle R as its impact zone (filled in yellow1 in the figure),
which centers at the midpoint of l1 and has the width of jl1j + 2w
and the height of 2w, where jl1j denotes the length of l1 and w is a
user-defined parameter, set as 20 in this paper. A LS satisfying the
following two conditions is assumed to be coplanar with l1 in 3D
space: First, it has at least one endpoint dropping in R. Second, its
intersection with l1 is also within R. Under these two conditions,
in Fig. 2(a), only l2 is accepted to be used to intersect with l1 to con-
struct V-junction(s).

There exist two distribution forms where two LSs are used to
construct V-junction(s), as shown in Fig. 2(b). In the left form
where the intersection of l1 and l2 lies on one of them (not on their

extensions), two V-junctions, dAOC and dBOC are constructed. We

call dAOC an acute V-junction because angle a is an acute angle
(right angle cases are also included in this type); analogously, we

call dBOC an obtuse V-junction. In this distribution form, we con-
struct two V-junctions. We do this because it is unknown which
type(s) of V-junction(s) is (are) constructed using the correspon-
dence of l1 (let it be l01) and the correspondence l2 (let it be l02). If
an acute V-junction is constructed using l01 and l02, it can be

matched with dAOC; if an obtuse V-junction is constructed using

l01 and l02, it can be matched with dBOC; lastly, if two V-junctions
are constructed using l01 and l02, the acute V-junction and

obtuse V-junction can be matched with dAOC and dBOC , respectively.
In the right distribution form where the intersection of the

two LSs lies on their extensions, only one V-junction, dAOC is
constructed.
3.1.2. V-junction description
To match V-junctions constructed in two images, we exact for

each V-junction a scale and affine invariant region and describe
it with SIFT descriptor. Our idea derives from the edge-based
region (EBR) detector proposed by Tuytelaars and Van Gool
(2004), which exploits features of edges on images to detect invari-
ant regions. We exploit features of LSs to extract invariant regions
for V-junctions. Besides, we consider the relationship between
adjacent LSs to make extracted invariant regions less sensitive to
noises and location imprecision of LSs.

For a V-junction, we detect for each of the two LSs forming it a
stable point which has the greatest intensity change among all
points on the LS. Suppose l is one of the two LSs forming a
V-junction V, if l was used to construct V-junctions besides V, as
LS AB shown in Fig. 3(a), the junction points are selected as the
candidates of the stable point. This is reasonable because LSs lie
at region borders, so that if l meets a LS, it likely reaches a region
border. The junction of l and the LS it meets is very possible to
be a stable point. On the other hand, if l was not used to construct
any V-junction other than V, as LS CD shown in Fig. 3(a), all points
on l are regarded as candidate stable points. In this way, we collect
a set of candidate stable points C ¼ fSigNs

i¼1 for l. We select the best
candidate as the one which has the most abrupt intensity change
along l. For a candidate Si, we collect 5 points in both its sides along
l and gather two sets of the pixel intensities, I1ðSiÞ and I2ðSiÞ. The
intensity change of Si is calculated as: IdðSiÞ ¼ jmedðI1ðSiÞÞ�
medðI2ðSiÞÞj, where medð�Þ means the median value of a set of
numbers. The Si with the maximal value of IdðSiÞ is selected as
1 For interpretation of color in Figs. 2 and 7, the reader is referred to the web
version of this article.
the stable point for l. Here, median value of a set of intensities is
used to compute the intensity change of a candidate point because
this can reduce the influence of noises among the sets.

After finding a stable point for the two LSs forming a V-junction,
as S1 for AB and S2 for CD shown in Fig. 3, the parallelogram deter-
mined by these two stable points and the junction is regarded as
the invariant region for the V-junction, as shown in Fig. 3(b).
Fig. 4 shows the extracted invariant regions by our method on
two images with different sizes and a great viewpoint change.
We can see that, in this extreme case, some (nearly) identical
regions are extracted in the two images.

Since most signal variations exist in the vicinities of LSs, we
expand the extracted parallelogram into a larger one to include
more discriminative information, as shown in Fig. 3(c). Next,
we normalize the expanded parallelogram into a square through
affine transformation to make it affine invariant. Finally, we
describe the square with SIFT (Fig. 3(d)). The size of the square is
suggested to be 41 � 41 by Mikolajczyk et al. (2005), but we find
in our case the matching results are better when it is set
as 21 � 21.
3.1.3. V-junction matching
To match V-junctions from two images, the general way is to

evaluate the Euclidean distances of their description vectors. But
since the two LSs forming a V-junction are in a local region, their
crossing angle should vary in a small range under most image
transformations. We can use this simple constraint to discard
many false candidates before evaluating the description vector dis-
tance. Let ðV;V0Þ be a pair of V-junctions to be matched and (h; h0)
be the crossing angles of the two pairs of LSs. If ðV;V0Þ is a correct
match, the difference between h and h0 should be less than a small
threshold �1 (set as 30� in this paper), i.e., jh� h0j < �1. Once V and
V0 meet this constraint, we evaluate them further by computing
their description vector distance. When the distance is less than
the given threshold dt (set as 0.4 in this paper), we accept them
as a candidate match. There may exist the case that a V-junction
in one image is matched with several V-junctions in the other
image, we keep only the pair of V-junctions with the smallest dis-
tance for later use.

There inevitably exist false matches after evaluating
V-junctions from the two images using the above strategy. We
eliminate the false matches using the following two constraints.
First, we estimate the fundamental matrix for the two images from
the obtained V-junction matches using RANSAC. The fundamental
matrix enforces epipolar line constraint on the obtained V-junction
matches and we keep only those meeting this constraint. Epipolar
line constraint cannot filter out false matches that lie near corre-
sponding epipolar lines. We refine the obtained V-junction
matches further by exploiting the stability of the topological distri-
bution of a group of V-junctions in a local region with image
transformations.

Refer to Fig. 5, for a V-junctions Vc , the two LSs forming it and
their reverse extensions form a coordinate-like structure, in which
the neighbors of Vc (V1�8 in the figure) distribute in the four quad-
rants. This topological distribution is quite stable with image trans-
formations, i.e., after some kinds of image transformations, while
Vc is transformed into V0

c , its neighbors should change consistently.
To apply this constraint to refine the obtained V-junction matches,
for each candidate V-junction match ðVc;V0

cÞ, we collect the K
(K ¼ 10 used in this paper) nearest matched V-junctions as
~N ¼ fV igKi¼1 and ~N 0 ¼ fV0

jgKj¼1
for Vc and V0

c , respectively. If ðVc;V0
cÞ

is a correct match, the following two conditions must be satisfied.
First, there should exist a sufficiently large proportion (0.5 used in

this paper) of correspondences in ~N and ~N 0. Second, the correspon-



Fig. 2. V-junction generation. (a) Finding image LSs possibly coplanar in 3D space. (b) Two distribution forms of a pair of adjacent LSs.

Fig. 3. Illustration of the scale and affine invariant local region extraction and description procedures of our proposed method. (a) Finding stable points on the two line
segments forming V-junction dBOD. (b) The extracted local region. (c) The expanded local region. (d) Describing the normalized local region with SIFT.

Fig. 4. Scale and affine invariant local region extraction on two images (Mishkin et al., 2013) with a great viewpoint change. The parallelograms drawn in different colors are
the extracted local regions. Only a subset of all extracted parallelograms are shown in the two images for better interpretation. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Illustration of the stability of the topological distribution among adjacent V-junctions with image transformations.
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dences in ~N and ~N 0 lying in the same quadrants of the coordinates
formed by Vc and V0

c should account for a great ratio of the total
correspondences; the ratio is set as 0.8 in this paper. For example,
suppose V i 2 ~N corresponds to V0
j 2 ~N 0, if V i lies in quadrant III of

the coordinates centered at Vc;V0
j should also lie in quadrant III

of the coordinates centered at V0
c in a high possibility.
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With the guidance of epipolar line constraint and the topologi-
cal distribution constraint among neighboring V-junctions,
V-junctions from the two images can be matched exhaustively
by alternatively adding new matches and deleting false ones until
no more correct match can be added (Li et al., 2016b).

3.2. Individual line segment matching

LSs in the two images that lie far away from others and were not
used to form V-junctions with others will be matched in individu-
als. They will first be grouped according to the matched
V-junctions, and then matched in corresponding groups based on
the local homographies estimated from V-junction correspondence
pairs.

3.2.1. Local homography estimation
Coplanar cue C1 we stated in the introduction section indicates

that adjacent LSs on an image are very likely to be coplanar in
space. Therefore, the two pairs of LS correspondences brought by
a V-junction match can be regarded as the projections of two
coplanar 3D LSs onto two images. We can estimate from the two
pairs of LS correspondences the planar homography induced by
the plane on which their corresponding 3D LSs lie, with the
help of the estimated fundamental matrix (already obtained using
V-junction matches, see Section 3.1.3).

A planar homography H is determined by eight degrees of free-
dom, necessitating 8 independent constraints to find a unique
solution. However, when the fundamental matrix F for the two
images is known, then H>F is skew-symmetric (Luong and
Vieville, 1996), i.e.

H>Fþ F>H ¼ 0: ð1Þ
The above equation gives five independent constraints on H, and
three others are required to fully describe a homography.

The homography induced by a 3D plane p can be represented as

H ¼ A� e0u>; ð2Þ
where the 3D plane is represented by p ¼ ðu>;1Þ in the projective
reconstruction with camera matrices C ¼ ½Ij0� and C0 ¼ ½Aje0�. For a
LS match ðl; l0Þ, suppose x is an endpoint of l, the homography maps
it to its corresponding point x0 as: x0 ¼ Hx. Since l and l0 correspond
with each other, x0 must be a point lying on l0, that is l0>x0 = 0. There-
fore, we obtain

l0>ðA� e0u>Þx ¼ 0: ð3Þ
Arranging the above equations, we finally get

x>u ¼ x>A>l0

e0>l0
; ð4Þ

which is linear in u. Each endpoint of a LS in a LS match provides an
equation, and the two LS matches brought by a V-junction match
provide totally four constraint equations. A least-square solution
of u can be obtained from the four equations, and the local homog-
raphy H can then be computed from Eq. (2).

3.2.2. Individual line segment matching

Let M ¼ fðVm;V0
mÞgSm¼0 be the set of S V-junction matches iden-

tified from the two images, where ðVm;V0
mÞ denotes the m-th V-

junction match. Let K ¼ fligMk
i¼1 and K0 ¼ fl0jg

Nk

j¼1
be the two groups

of individual LSs, which have not been matched before, from the
two images, respectively. For each individual LS li 2 K or l0j 2 K0,
we find kl (kl ¼ 4 in this paper) of its nearest matched V-
junctions and assign it into the corresponding kl groups. After that,
any matched V-junction in K and K0 collects zero to multiple indi-
vidual LS(s). We match individual LSs group by group, i.e., a indi-
vidual LS from a group in one image is evaluated only with
individual LSs from the corresponding group in the other image.
Note here we redundantly assign each LS into kl groups, which will
cause some LS pairs being evaluated in multiple times. But it is still
necessary to do so to ensure two true (correct) LS correspondences
to be assigned into at least one pair of corresponding groups and
evaluated at least one time.

Suppose l and l0 are a pair of individual LSs to be evaluated and
they are collected by the matched V-junctions V and V0, respec-
tively. Suppose V is formed by LS pair ðlp; lqÞ; ðl0p; l0qÞ for V0. The
directions of adjacent LSs should change similarly with image
transformations. Let r be the direction difference of l and l0;rp

for lp and l0p, and rq for lq and l0q. If r� rpþrq

2

�� �� < �2, where �2 is a

user-defined threshold set as 20� in this paper, we accept ðl; l0Þ
temporarily and take it for further evaluation. We next test ðl; l0Þ
again using the brightness constraint (Bay et al., 2005), which
requires the brighter sides of two corresponding LSs to be the
same. The brighter side of a LS refers to the side where the average
intensity value of pixels in a small profile along the LS is greater
than that of the other side.

If ðl; l0Þ satisfies the above constraints, we evaluate it further by
the local homography Hl, which is estimated from V and V0 using
the strategy presented in Section 3.2.1. We map l and l0 by Hl, gen-
erating their correspondences lh for l, and l0h for l0. The average of
the four distances, including the perpendicular distances of two
endpoints of l0h to l and the perpendicular distances of the two end-
points of lh to l0, is defined as the mapping error of (l; l0). After that,
there may exist the cases that one LS in one image is matched with
several LSs in the other image. We select the pair with the minimal
mapping error as the correct match and reject the others.

4. 3D line segment reconstruction algorithm

This section first presents our method for 3D LS reconstruction
from two views (images), and then introduces how we extend the
two-view based method into multiple views. To be clear, in this
paper, when we say multiple views, we mean three or more views.

4.1. Two-view based 3D line segment reconstruction

Given images I and I0, suppose their corresponding camera
poses are C and C0, which can be obtained by some existing SFM
pipelines, such as the famous Bundler (Snavely et al., 2006, 2008),
or some camera calibration methods (Přibyl et al., 2015; Zhang,
1999). Suppose LS matches obtained from I and I0 by a LS matcher

is ~M ¼ fðlr ; l0rÞg
Nr

r¼1. Note that the LS matcher is not necessarily the
one we introduced above; our 3D LS reconstruction algorithm is
independent to the LS matcher used. For every LS match
ðlr; l0rÞ 2 ~M, we search its spatial neighbors in ~M by finding
matched LSs from Iwhich are adjacent to lr . A LS match is regarded
to be a neighbor of ðlr; l0rÞwhen any one of the two endpoints of the
matched LS from I is within a rectangle centered around lr . For
example, if matched LS ls is found to be adjacent enough to lr , LS
match ðls; l0sÞ is regarded as a neighbor of LS match ðlr ; l0rÞ. The width
of the rectangle equals to the length of lr , while its height equals 20
pixels (10 pixels in both sides of lr) in this paper. If we find at least
one neighbor for ðlr; l0rÞ, we can estimate the corresponding local
homography using the method presented in Section 3.2.1. Please
note that Section 3.2.1 shows that it is enough to estimate a
homography using two LS matches; if more LS matches are avail-
able so long as they are induced by coplanar 3D LSs, they can pro-
vide more constraints on homography estimation. Therefore, if we
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find for ðlr ; l0rÞ multiple neighbors, we can use all of them to esti-
mate the homography. In contrast, if we fail to find any neighbor
for ðlr ; l0rÞ, we are unable to calculate the homography. Having pro-
cessed all LS matches in ~M, we obtain a set of homographies,

H ¼ fHigNh
i¼1, where Nh denotes the total number of homographies

obtained and it is often much smaller than the number of elements
in ~M because we often cannot find for some LS matches even one
neighbor.

In most cases, it is enough to robustly estimate the planar
homographies induced by main planes in the captured scene using
only the obtained LS matches. But occasionally a LS matcher, espe-
cially when it is a weak one, cannot find enough LS matches that
are induced by 3D LSs coming from some main scene planes. To
avoid this situation, we employ point matches obtained from the
two images to assist for homography estimation.

Suppose ðp;p0Þ is a point match, a homography H relates the
two points as p0 ¼ Hp. Replacing H using Eq. (2), we have

p0 ¼ Ap� e0ðu>pÞ: ð5Þ
From this equation, we know vectors p0 and Ap� e0ðv>pÞ are paral-
lel, so that their vector product is supposed to be zero:

p0 � ðAp� e0ðu>pÞÞ ¼ ðp0 � ApÞ � ðp0 � e0Þðu>pÞ ¼ 0: ð6Þ
When using Eq. (6) to form the scalar product with the vector
p0 � e0, we have

p>u ¼ ðp0 � ðApÞÞ>ðp0 � e0Þ
ðp0 � e0Þ>ðp0 � e0Þ : ð7Þ

Same as to Eq. (4), this equation is also linear in u and provides one
constraint.

Therefore, when point matches between the two images are
available, for every LS match ðlr; l0rÞ 2 ~M, while searching for its
neighboring LS matches, we also find its point match neighbors.
If a matched point from I is within the rectangle centered around
lr , the corresponding point match is also used to estimate the local
homography.

4.1.1. Line segment match grouping
Coplanar cue C2 we stated in the introduction section indicates

that the projections of coplanar space LSs into two images shall be
related by the same homography. Based on this cue, we cluster LS
matches in ~M using homographies in H. For a LS match ðl; l0Þ 2 ~M,
we find a homography H 2 H which minimizes the distance of a
pair of LSs according to a homography:

d ¼ l0>Hx1 þ l0>Hx2 þ l>H�1x0
1 þ l>H�1x0

2

4
; ð8Þ

where xi¼1;2 and x0
j¼1;2 denote the two endpoints of l and l0, respec-

tively. Note that each of the four components of the right side of the
above equation measures the distance from an endpoint of one LS to
the other LS according to the given homography. For example,
l0>Hx1 measures the distance from x1 to l0 according to H. In other
words, it is the distance between point xh

1 ¼ Hx1 and

l0 : l0>xh
1 ¼ l0>Hx1, where xh

1 is the mapping of x1 under H from I to I0.
Having found for every LS matches in ~M a most consistent

homography (with the smallest distance measure defined in Eq.
(8)) in H, we get a set of LS match groups S ¼ fGtgTt¼1, where Gt

denotes the t-th LS match group which is formed based on a
homography in H. LS correspondences in each LS match group
are related by the same homography induced by a space plane in
the scene. Next, we merge some groups in S to ensure that LS
matches induced by coplanar 3D LSs are clustered into only one
group. For two LS match groups, Gu and Gv , suppose they are
formed based on homographies Hu and Hv , respectively, if LS
matches in Gu are consistent with Hv , and the same goes for Gv
and Hu, we merge the two groups into one. Here, a group of LS
matches are ‘‘consistent” with a homography means the average
of their distances according to the homography (the distance mea-
sure is defined in Eq. (8)) is smaller than a given threshold (2 pixels
in this paper). After this, we obtain an updated LS group set S, in
which the number of groups drops significantly.

4.1.2. Line segment match grouping result refinement
We found that it often brought in mistakes when we grouped LS

matches only based on the distance of two LS correspondences
according to the estimated homographies, such that some LS
matches which should be assigned into one group but were clus-
tered into another group mistakenly. This kind of mistakes fre-
quently occur when there are several similar space planes in the
scene and the estimated homographies are not so accurate. For
instance, Fig. 6(a) shows an example of the LS match grouping
result using the strategy presented above. We drawn in different
colors the matched LSs in one of the two used images to differen-
tiate the groups they belong. LSs drawn in the same color are sup-
posed to appear on the same scene plane if they had been correctly
grouped. But, as we can see, a considerable number of them are
mistakenly clustered.

Coplanar cue C1 we stated in the introduction section indicates
that adjacent image LSs are projected from the same space plane in
a high possibility. This cue can be framed into Markov Random
Field (MRF). We propose to formulate the LS match grouping prob-
lem as a multi-label optimization problem and solve it by minimiz-
ing the following energy function

E ¼
X
p

DpðlpÞ þ
X
p;q

Vp;qðlp; lqÞ; ð9Þ

where the data term Dp is the cost of a LS match p ¼ ðlp; l0pÞ being
labeled to belong to a group lp. Suppose the homography relating
LS matches in lp is Hlp ;Dp can then be calculated from Eq. (8). The
smoothness term Vp;q measures the cost of two neighboring LS
matches p and q being labeled to belong to groups lp and lq, respec-
tively. To define Vp;q, an adjacency graph among the LS matches
needs to be constructed. Inspired by Delong et al. (2012) and
Pham et al. (2014) who constructed Delaunay triangles for feature
points to define their adjacency, we construct Delaunay triangles
using the midpoints of matched LSs in the first image to define
the adjacent relationship among the LS matches. Fig. 6(b) shows
the constructed Delaunay triangles corresponding to Fig. 6(a). With
the adjacency graph derived from the Delaunay triangles, we set the
smoothness term as

Vp;qðlp; lqÞ ¼
swpq lp – lq
0 lp ¼ lq;

�

where wpq is the weight for the edge linking vertexes p and q in the
adjacency graph. It is assigned by Gaussian function according to
the distance between the two vertexes to encourage vertexes with
smaller distances being assigned with the same label in a higher
possibility. s is a constant serving to amplify the differences of
weights and is empirically set as 4 pixels in this paper. Having
defined all the terms, we resort to graph cuts (Boykov et al.,
2001) to minimize the objective function. The regrouping result cor-
responding to the minimum of the objective function is shown in
Fig. 6(c). Comparing Fig. 6(a) and (c), we can observe that almost
all mistakes have been corrected.

4.1.3. Space plane estimation and trimming
For each LS match group Gi 2 S, triangulating all the pairs of

corresponding LSs obtains a group of 3D LSs, Li. All 3D LSs in Li



Fig. 6. An example used to illustrate some important steps of the proposed two-view based 3D LS reconstruction method. (a) The LS match grouping result before the
refinement procedure. The grouping result of the matched LSs in the first image is shown. LSs drawn in the same color are regarded to belong to the same group. (b) The
Delaunay triangles constructed using the middle points of matched LSs in the first image. (c) The LS match grouping result after applying the refinement procedure. (d) The
final 3D LS reconstruction result for the scene. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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are supposed to lie on a space plane Pi. We estimate Pi from the
endpoints of 3D LSs in Li using RANSAC. Next, we recompute the
homography induced by Pi and use it to check if LS matches in Gi

are consistent with it or not. We accept Pi as a correct plane only
when the majority (0.8 in this paper) of LS matches in Gi are con-
sistent with it. This step can ensure only robust space planes are
kept for further processing because an accidentally formed LS
match group would not result in a robust space plane such that
the majority of the LS matches are consistent with its induced
homography. If Pi is accepted, the final reliable 3D LSs correspond-
ing to LS matches in Gi can be obtained simply by back-projecting
matched LSs from one image onto Pi, producing an updated Li.
After processing all LS match groups in S, we obtain a space plane

set P ¼ fPigNp

i¼1, the corresponding 3D LS set L̂ ¼ fLigNp

i¼1, and the

updated LS match group set S ¼ fGigNp

i¼1.
To remove some falsely reconstructed 3D LSs brought by a few

falsely grouped matches that still exist after the refinement proce-
dure, we intersect adjacent 3D planes, trim each plane at the inter-
section and keep the half plane on which there are more 3D LSs
than those on the other half plane. It is reasonable to do so because
only a minor (if any) fraction of 3D LSs on a plane are falsely recon-
structed and they are certain to lie on the opposite side (according
to the intersection) of the correctly reconstructed majority. Illus-
tration of this plane trimming strategy is shown in Fig. 7(a).

The way we determine the adjacency of space planes is as fol-
lows: We project all groups of 3D LSs in L̂ onto the first image

and generate the corresponding 2D LS set L̂2d ¼ fL2d
i gKi¼1. Refer to

Fig. 7(b), for two space planes Pi;Pj 2 P, suppose their correspond-

ing 2D LS sets are L2d
i and L2d

j . Let the convex hulls determined by

L2d
i and L2d

j be CHi and CHj, respectively. Let the convex hull deter-

mined by both L2d
i and L2d

j be CHw (the region outlined by dashed

red line in Fig. 7(b)). If there exists a third 2D LS set L2d
m 2 L̂2d,

which determines a convex hull CHm that has a big overlapping
ratio (0.6 in this paper) with CHw, we deem there is a third space
plane lying between Pi and Pj, and do not regard Pi and Pj to be
adjacent. Otherwise, we treat Pi and Pj as adjacent planes. This
strategy makes sense because it is very likely to be true in struc-
tured scenes that two space planes are adjacent if there is not a
third space plane between them.

In Fig. 6, we show the final 3D LSs for the scene in sub-figure (d).
We can see that the three main planes in the scene are correctly
recovered and all 3D LSs are well reconstructed and correctly clus-
tered w.r.t. the space planes they lie.
4.2. Multi-view based 3D line segment reconstruction

If more than two images are available, it is easy to extend the
above two-view based 3D LS reconstruction method to deal with
multiple views. We just need to combine the results obtained from
every adjacent pair of images. In details, we begin with using the
first two images to generate a set of space planes P1, and the cor-
responding set of 3D LSs L̂1. The two sets are used to initialize the
global space plane set P g ¼ P, and the global 3D LS set L̂ g ¼ L̂1, for
the whole scene. The subsequent images are used to refine the two
global sets. Each subsequent image is used to reconstruct 3D LSs
with its previous image (we assume the input images are aligned),
generating a new space plane set Pi and a new 3D LS set L̂i. For
each space plane Pij 2 Pi, suppose its corresponding 3D LS set is

Lij 2 L̂i, if Lij is consistent with a space plane Pm 2 P g , whose cor-
responding 3D LS set is Lm, we merge Pij and Pm into a new space
plane using 3D LSs in Lij and Lm; we next project 3D LSs in Lij and
Lm onto the new space plane. Otherwise, we regard Pij as a new

plane and insert it into P g , and meanwhile insert Lij into and L̂ g .

Algorithm 1. 3D Line Segment Reconstruction
Input: Images I ¼ fIigNi¼1ðN P 2Þ, line segment matches

M̂ ¼ fMigN�1
i¼1

Output: 3D line segments L̂ g , space planes P g

1: Initialize L̂ g ¼ £;P g ¼ £

2: for each Mi 2 M̂ do
3: Estimate local homographies Hi using Mi.
4: Group line segment matches inMi usingHi into clusters

as Si ¼ fGjgMj¼1.

5: Refine Si through multi-label optimization.
6: for each Gj 2 Si do
7: Estimate the corresponding space plane Pj.
8: Project line segments in Gj onto Pj and obtain 3D line
segment set Lj.

9: if Pj can be merged with a space plane Pm 2 P then

10: Merge Pj and Pm, update P g and L̂ g .
11: else
12: Insert Lj into L̂ g , and Pj into P g .
13: end if
14: end for
15: end for
16: Remove duplications in L̂ g .

After processing all images, there would exist a considerable
number of duplications in L̂ g because a space LS can be visible in
multiple views and be reconstructed in multiple times. We need
to remove these duplications. Since 3D LSs in our case are orga-
nized according to space planes, the duplications of a 3D LS must
lie on the same space plane. We can therefore conduct duplication
removal plane by plane in 2D space. For each space plane Pi 2 P g ,



Fig. 7. Illustration of the strategy of removing falsely reconstructed 3D LSs. (a) Adjacent space plane intersection and trimming. (b) Finding adjacent space planes.

K. Li, J. Yao / ISPRS Journal of Photogrammetry and Remote Sensing 125 (2017) 33–49 41
we project 3D LSs on it to a 2D plane P2d
i . For a LS lm on P2d

i , we
search its neighbors in a band around it. The band has the width
equaling to the length of lm and the height of 6 pixels (3 pixels in
both sides of lm) in this paper. A LS ln is regarded as a neighbor
of lm if it meets the two condition: First, both its two endpoints
drop in the band around lm. Second, the direction difference
between lm and ln is less than 5�. In this way, we obtain a set of
neighbors for lm. All neighbors of lm and lm itself are merged into

a single LS. After that, we project the merged new LSs from P2d
i back

to Pi.

The above duplication removal strategy has advantages over
those of some existing methods because it is easier and more reli-
able for us to define which LSs are adjacent enough to be merged
into one. We only need to search in the band around a LS to find
its possible duplications in a 2D plane, rather than in a cylinder
in 3D space as that done by Jain et al. (2010) and Hofer et al.
(2014). Therefore, the cases are rare in our method that the 3D
reconstructions of multiple scene LSs are falsely regarded as the
duplications of one scene LS, and one scene LS is reconstructed
with multiple 3D representations. This benefits our method on
delivering more accurate details of scenes.

Algorithm 1 outlines the main steps of the proposed method.
5. Experimental results

The experimental results of the proposed LS matching algo-
rithm and 3D LS reconstruction algorithm are presented in this sec-
tion first, followed by some discussions about the parameter
settings of the two algorithms.

5.1. Line segment matching results

5.1.1. Natural scene images
We employed a recent line segment matching benchmark data-

set (Li et al., 2016a) to evaluate our method on natural scene
images. The benchmark dataset comprises of 15 image pairs char-
acterized by various image transformations and scene types cap-
tured, 30 pairs of LS sets extracted from the 15 image pairs using
two LS detectors (LSD (Grompone et al., 2010) and EDLines
(Akinlar and Topal, 2011)), and the ground truth matches among
all the 30 pairs of LS sets.2 The 15 image pairs are shown in Fig. 8.
We took as input all the 15 image pairs and the corresponding LS
sets extracted by LSD for our method and the other two state-of-
the-art ones. The comparative results are shown in Fig. 9. The LS sets
extracted by EDLines were not experimented because it was
reported that the matching results are similar when replacing LSs
extracted by LSD with that by EDLines (Li et al., 2016a).

From Fig. 9, we can see that the three compared methods vary
their relative ranks in the three performance evaluation measures:
recall, i.e., the ratio of the number of correct matches and the num-
ber of ground truth matches; accuracy, i.e., the ratio of the number
2 Available at http://kailigo.github.io/projects/LineMatchingBenchmark.
of correct matches and the number of obtained matches; F-Mea-

sure = 2�accuracy�recall
accuracyþrecall . Statistically, among the 15 image pairs, LJL (Li

et al., 2016b) gains the highest recall scores in 9 of them, while
our method achieves the best among the rest 6 image pairs. LPI
(Fan et al., 2012) does not achieve the best recall score in any
image pair, but it dominates the accuracy score and achieves the
highest in 11 of the 15 image pairs. F-Measure reflects the matching
performance of a method from both recall and accuracy aspects.
Fig. 9 shows that our method, LJL and LPI win the best in 6, 7
and 2 image pairs, respectively. Based on these observations, we
can conclude that our algorithm is slight inferior to LJL in term of
matching performance, but significantly better than LPI. As for run-
ning time, our method owns overwhelming advantages over the
other two methods: our method uses much less time than the
other two in 14 of the 15 image pairs. We stated in the introduc-
tion section that our proposed algorithm targets to solve the low
efficiency problem of LJL; these results convincingly substantiate
our statement and our algorithm indeed tremendously improves
the efficiency of LJL, with only a minor sacrifice of the matching
performance.

The good performance of our algorithm owes to the local region
extractor’s robustness in generating repeatable local regions
around V-junctions from images and SIFT’s capability in powerfully
describing the extracted local regions. Meanwhile, the inheritance
of many benefits from LJL, like iteratively refining initial junction
matches and matching individual LSs by local homographies, also
contributes to our good performance. Unlike LJL which deals with
scale changes among images to be matched through some sophis-
ticated and time-consuming scale change simulation procedures,
we extract scale invariant local regions in the original images
and thus achieve significant improvements on the matching
performance.

One may have noticed that the running time of our method on
image pair (i) is anomalously high. This is due to the dense distri-
bution of the extracted LSs. The two images have the size only of
800 � 600, but 1071 and 1016 LSs are extracted in them, respec-
tively. Meanwhile, these extracted LSs crowd in the images, result-
ing in a great number of V-junctions being constructed in both
images (11,851 in one image and 11,444 in the other). Construct-
ing, describing and matching such two large sets of V-junctions
definitively impose a great computation burden on the algorithm.
However, it had been proved previously (Li et al., 2016b) that the
LS matching efficiency for this type of scene can be tremendously
improved by reducing the sizes of the impact zones of LSs, without
impairing the good matching performance. This is because the
abundance of LSs in this type of scenes makes it possible to gener-
ate sufficient numbers of V-junctions to match LSs even LSs has
small impact zones.

The running time of our algorithm does not depend on the
quantities of extracted LSs, but on the quantities of constructed
V-junctions. Suppose the numbers of V-junctions constructed in
two images are Nv and N0

v , and the number of matches found from
them is Nc , the time complexity of each step of the proposed
method is as follows: The time cost of the local region extraction

http://kailigo.github.io/projects/LineMatchingBenchmark


Fig. 8. The 15 image pairs, referred later as (a)–(o), from a line segment matching benchmark dataset (Li et al., 2016a).

Fig. 9. The comparative results of our proposed LS matching algorithm and the other two. Note that in the right bottom sub-figure, bins with heights above 160 were
truncated to limit the range of the heights.
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and description is O(Nv þ N0
v). The time complexity of the

V-junction matching step is O(dvNvN
0
v ), where dv is the dimension

of the feature description vectors. The cost for estimating homo-
graphies from the Nc V-junction matches is O(Nc), and the cost
for matching individual LSs from two images is O(klMl), where kl
is the number of groups each individual LS is assigned to during
the individual LS matching stage, and Ml is the number of individ-
ual LSs to be matched in the first image.
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5.1.2. Aerial images
Sun et al. (2015) proposed an algorithm, referred later as PHLM,

that targeted to match LSs in aerial images. They concluded that in
this special type of images, their algorithm performed better than
state-of-the-art (at that time) LS matching methods. It is well
known that in most cases, feature matching on aerial images is
easier to be performed than that on natural scene images because
of the relatively little image distortions and relatively simple image
transformations. We cannot employ the benchmark dataset shown
in Fig. 8 to evaluate PHLM because it requires the 3D points for the
captured scene and point matches among the images as input to
serve for LS matching, whereas none of which are provided in
the benchmark dataset. Besides, a component of PHLM, the case
II assumes scene LSs are under terrain plane or are parallel to that
plane; this strong assumption holds only for some aerial images.
For these two reasons, we have to use aerial images that can be
processed by PHLM to make a fair comparison between our
matcher and PHLM. We took as input the same images3 used by
Sun et al. (2015) and employed also LSD for extracting LSs.

The matching results of our matcher and PHLM are shown in
Table 1. In Fig. 10, we visualize our matching results. Please note
that the matching data of PHLM in Table 1 is from the authors’
paper. We can see that on all the four pairs of aerial images, our
matcher produced much more matches with higher accuracies
than PHLM. Our matcher used less than 2 s4 on all image pairs, evi-
dencing our good matching efficiency. Note that we do not provide
the running time of PHLM in Table 1. Sun et al. (2015) did report
in the paper the running time on these image pairs, but since the
time was measured on their machine, while the listed running time
of our matcher was measured on our machine, it is therefore of no
meaning to make a comparison between the reported running time
of PHLM with ours.

5.2. Point matching results

Another benefit of the proposed LS matching method is that
while it generates LS matches, it also produces point matches. This
benefit would make the proposed method favorable in some
upper-level applications, such as SLAM (Engel et al., 2014) and
3D scene modeling (Sinha et al., 2009), where exploiting both point
matches and LS matches was proved to produce better results. Our
method owns this benefit because it matches some LSs from
images by effectively matching the V-junctions they formed
through extracting scale and affine invariant local regions for
V-junctions. In fact, we found that our method is quite robust for
obtaining point matches. Fig. 11 visualizes the point matches
obtained by the proposed method on image pairs characterized
by some extreme image transformations or the scarce textures of
the captured scenes; the point matches obtained by SIFT5 on the
same images are also visualized as a comparison. It is easy to observe
that our proposed method produced much more point matches than
SIFT, with much higher accuracies as well in all the image pairs. (The
optical flows of the matched points of our method in the first image
are more consistent with each other in each of the image pairs than
those of SIFT. It is sure that the more consistent the optical flows of
the matched points are, the higher the matching accuracy is.)

5.3. 3D line segment reconstruction results

This part presents the experimental results of the proposed 3D
LS reconstruction method. The two-view based 3D LS reconstruc-
3 Image patches with size of 500 � 500 selected from large aerial images.
4 The running time was measured on a 3.4 GHz Inter (R) Core(TM) processor with

12 GB of RAM.
5 The implementation is from http://www.cs.ubc.ca/�lowe/keypoints/.
tion results are presented first, followed by the results obtained
from images sequences. All images employed for experiments are
from public datasets (Jain et al., 2010; Jensen et al., 2014;
Strecha et al., 2008).
5.3.1. Two views
Figs. 1 and 6 show two sample results of the two-view based 3D

LS reconstruction method. Fig. 12 shows four additional sets of
such results. From all these figures, we can observe that the pro-
posed method has successfully reconstructed a large part of 3D
LSs lying on main planes of the scenes, and correctly clustered
them w.r.t. their respective space planes. The main structures of
the scenes are well outlined by the reconstructed LSs. These exper-
iments prove the feasibility of the proposed two-view based 3D LS
reconstruction strategy.
5.3.2. Multiple views
Two-view based 3D reconstruction is limited by the scope of the

images; when multiple images are available, more scene content
can be covered and the reconstruction results generated from each
two images can complement with each other, contributing to more
complete and detailed scene models. In this part, we present the
experiments of our method on two image datasets, a synthetic
image dataset and a real image dataset.

Synthetic images. The synthetic image dataset has 80 � 3 = 240
images photographing around a CADmodel from the upper, middle
and bottom viewpoints. An example image from the dataset is
shown in Fig. 13(a). We employed for experiments only the 80
images for the middle round because we found in our initial exper-
iments that the reconstruction result generated by our method
based on the 80 images is negligibly different from that based on
all 240 images, but the running time dropped significantly. The
result model O80 is shown in Fig. 13(b). We can observe from O80

that the main planes in this scene are correctly recovered, and
LSs in the scene are precisely reconstructed and correctly clustered
w.r.t. the planes they lie. We overlapped O80 with the ground truth
CAD model to qualitatively evaluate the reconstruction accuracy,
as shown in Fig. 13(c). As we can see, the vast majority of the
reconstructed LSs (in black) cling to or closely approach the ground
truth model, which indicates the high reconstruction accuracy. To
test the robustness of the proposed method for 3D reconstruction
from a small number of images, we sampled from the 80 used
images by taking one from every three images, producing a new
image sequence containing 27 images. Taking as input this new
image sequence, our method generated the 3D model O27 shown
in Fig. 13(d). Comparing O27 with O80, we can see that there is no
significant difference between them, except some missing LSs on
the roof and bottom of the captured house in O27; LSs on the walls
of the house are identically and completely reconstructed in both
models. Besides, LSs in O27 are also correctly clustered w.r.t. their
respective planes.

For comparison, we show in Fig. 13(e)–(g) the reconstruction
models of a recent algorithm, Line3D++ (Hofer et al., 2016),6 using
the whole 240 images of the dataset (C240), our used 80 images (C80)
and 27 images (C27), respectively. We can see that the reconstruction
result of Line3D++ degenerates dramatically as the number of used
images decreases. Line3D++ is able to generate good result when
plentiful images are available, but cannot guarantee it with a small
number of images. Our method, on other hand, is much less depend-
able on the availability of abundant images. Comparing Line3D++’s
best model C240 with our model O80, we can see that although C240

presents more details at the bottom of the house, our model is much
neater and contains less short LSs that are arbitrarily distributed,
6 Implementation is available in https://github.com/manhofer/Line3Dpp.
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Fig. 10. Results of the proposed LS matching algorithm on four pairs of aerial images. #TM and #CM denote the numbers of total matches and correct matches, respectively.
In each pair of images, two LSs in correspondence are drawn in the same color in both images and labeled with the same number at the middles. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
LS matching results of our method and PHLM (Sun et al., 2015) on four pairs of aerial images. #TM, #CM and #FM denote the numbers of total matches, correct matches and false
matches, respectively. ‘‘–” represents the data are unavailable.

#TM #CM #FM Accuracy (%) Time (s)

Aerial Ours 100 89 11 89.0 0.9
PHLM 56 45 11 80.3 –

Dunhuan Ours 111 102 9 91.9 0.8
PHLM 70 64 6 91.4 –

Tongzhou Ours 126 122 4 96.8 1.2
PHLM 82 79 3 96.3 –

Toronto Ours 160 146 14 91.3 1.9
PHLM 123 110 13 89.4 –
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which, to some extent, indicates our model is a better wire-frame
model for the scene. Besides, through carefully inspection, we can
observe that for some scene LSs, C240 presents several duplications,
while these cases are rare in our model. This proves the benefit of
our duplication removal strategy.

To quantitatively evaluate the reconstruction accuracy, follow-
ing previous works, we calculated the Hausdorff distances between
densely sampled points along 3D LSs in our models and the ground
truth CAD model, and computed the Mean Error (ME) and Root
Mean Square Error (RMSE). We do not directly compare our mea-
sure data with those of Line3D++ because Line3D++ is based on
the point clouds and camera parameters generated by some exist-
ing SFM systems, whose outputs are under arbitrary coordinates.
3D models generated by Line3D++ are hence inherently under
the input arbitrary coordinates. It is thus not a trivial thing to eval-
uate models generated by Line3D++ because the underlying coor-
dinates are inconsistent with that of the ground truth model.
Alternatively, since Line3D++ is directly promoted from the same
authors’ two earlier algorithms (Hofer et al., 2013, 2014) and the
two predecessors do not rely on SFM results, a comparison
between our measure data with the report data of the two prede-
cessors is also meaningful.7 Meanwhile, we will immediately show
7 The authors of Line3D++ made the source code of Line3D++ publicly available, but
did not do so for its predecessors. So, we can only compare our data with those
reported in the papers.
that this indirect comparison does not affect us to reach a conclusion
about the accuracies of our models and those of Line3D++.

Table 2 shows the measure data. We can see that when we set
the cutoff distance threshold (distance values greater than this
threshold are treated as gross errors and excluded for ME and
RMSE calculations) q ¼ 1:0, as that applied in ILGC (Hofer et al.,
2013), the RMSEs of our two models O27 and O80, are much better
than the others, while the MEs are slightly inferior to that of ICGC.
When we set q ¼ 0:6 as that used in LBR (Hofer et al., 2014), our
two models are better than that of EGCC (Jain et al., 2010), but
worse than both those of ILGC and LBR. Since Line3D++ is pro-
moted from ILGC and LBR, its generated model is supposed to be
of even higher accuracy. It is thus reasonable to infer that the
reconstruction accuracy of C240 is better than our models. But as
can be obviously seen from Fig. 13, it is unlikely that the recon-
struction accuracies of C80 and C27 are better than our two models,
O80 and O27, where the same numbers of images were fed to both
algorithms. Therefore, we can reach the conclusion that Line3D++
can produce 3D models with higher reconstruction accuracy than
our method, when plentiful images are available, but in the cases
that there are only a small number of images, our method produces
more accurate 3D models.

Real images. The real image dataset contains 30 images. Fig. 14
shows the result models of our method and Line3D++ generated
from these images. As we can see, in our model, the 3D LSs lying
on the main planes of the scene are well reconstructed; the details



Fig. 11. Point matching results of our method (left column) and SIFT (right column) on some image pairs. Red dots are the matched points; green lines represent the optical
flows of matched points in the first images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of the scene are precisely presented (see the bricks and windows of
the selected dashed elliptical region shown in Fig. 14(a)). Our
method failed to reconstruct 3D LSs on the main planes of this
scene shown in the selected rectangle region in Fig. 14(b). This is
because only several LSs were extracted on these two planes and
even fewer LS matches were obtained. Our method is unable to
reliably estimate a space plane when the quantity of LS matches
induced by 3D LSs on the plane is too small, and hence incapable
of obtaining the 3D LSs on it. Comparing with the model generated
by Line3D++, our model is obviously much more complete and
detailed.
Running time and limitations. The 3D LS reconstruction algo-
rithm is currently implemented based on MATLAB. The unrefined
codes took 631s on the 80 synthetic images and 1021s on the real
image dataset on a 3.4 GHz Inter (R) Core(TM) processor with
12 GB of RAM. It is expected that the code can be substantially
accelerated after refinements and being reimplemented in C++.

As stated above, this paper targets to reconstruct 3D LSs in
structured scenes that comprise of a set of planes. Some strategies
used in the two proposed algorithms are also specially designed for
this targeted scene type. For example, we match V-junctions from
images by describing local regions extracted around V-junctions



Fig. 12. Two-view based 3D LS reconstruction results. The top row shows the first images used for 3D LS reconstruction and the extracted LSs; the bottom row shows the
obtained 3D LSs.

Fig. 13. 3D LS reconstruction results on a synthetic image dataset. (a) One of the used images. (b) The 3D model (referred later as O80) obtained by the proposed method using
80 images. (c) The overlapping result of O80 with the ground truth scene model. (d) The 3D model (O27) obtained by the proposed method using 27 images. (e)–(g) The 3D
models generated by Line3D++ (Hofer et al., 2016) using 240, 80, and 27 images, respectively. The three models will orderly be referred later as C240 ;C80 and C27.

Table 2
The Mean Error (ME) and Root Mean Square Error (RMSE) of the reconstruction results obtained by our method, EGCC (Jain et al., 2010), ILGC (Hofer et al., 2013), and LBR (Hofer
et al., 2014) on a synthetic dataset. ‘‘–” denotes the data are unavailable.

q ¼ 1:0 q ¼ 0:6

ME RMSE ME RMSE

EGCC 0.162 0.291 0.137 0.189
ILGC 0.065 0.196 0.044 0.080
LBR – – 0.029 0.046
O27 0.077 0.114 0.075 0.104
O80 0.89 0.135 0.082 0.109
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with SIFT descriptor (Section 3.1.2). This strategy works only when
the extracted local region around a V-junction is a solid planar
patch in physical space because only in this situation, its corre-
sponding local region can possibly be extracted and described in
images captured from different viewpoints; otherwise, the sur-
rounding of the V-junction shall change significantly even with
slight viewpoint changes. For instance, for wiry objects (e.g., power
pylons (Hofer et al., 2013)), what captured in images can change
dramatically as viewpoint changes because the background shifts
from one place to others. The appearance description based local
region descriptor, SIFT would certain fail in this scenario. So, the
first limitation of our 3D LS reconstruction method is that it cannot
produce satisfactory results in scenes that are not characterized by
a set of solid planes. Besides, as observed from Figs. 13 and 14, our
method is unable to recover small planes in scenes where LS fea-
tures are scarce and consequently incapable of reconstructing 3D
LSs on the planes. So, in scenes dominated by small patterns, our
method would also fail.
5.4. Discussions about parameter settings

The two proposed algorithms both have a fair number of
parameters, so that it is nontrivial to tune all the parameters to
the optimal state. However, we found that the majority of the
parameters are easy to tune and can be fixed in some initial exper-
iments because some reasonable fluctuations of their values do not
cause much variation on the results. In this part, we first briefly
explain how we chose the values of tractable parameters whose
values are easy to tune, and next introduce in details how we fixed
two intractable parameters whose values are hard to tune.

5.4.1. Tractable parameters
�1, the threshold for the cross angle difference of V-junction cor-

respondences, is set as 30� in this paper. We know that the cross
angle of the two LSs forming a V-junction remains unchanged with
image translation, rotation and scale changes, and only changes
moderately with great viewpoint changes. So, the cross angle dif-



Fig. 14. The 3D LS reconstruction results of the proposed method and Line3D++ on a real image dataset. The top row shows our result model from two different viewpoints,
while the bottom row shows that of Line3D++.
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ference of two V-junction correspondences from two images shall
be a fairly small angle in most cases. In this paper, we set �1 as a
relatively big value �1 ¼ 30�, to validate this constraint on images
with great viewpoint changes. With the same idea, we set
�2 ¼ 20�, the threshold for the angle difference of two LS corre-
spondences relative to those of their neighbors when matching
LSs in individuals (Section 3.2.2). Other angle-related thresholds
were also set in the similar way.

kl, the number of groups each LS is assigned to when matching
LSs in individuals (Section 3.2), is set as 4 in this paper. As men-
tioned before, we redundantly assign each individual LS into mul-
tiple groups to ensure potential LS correspondences from two
images to be evaluated as least one time. This is meaningful
because we match individual LSs between corresponding groups;
once two LS correspondences fail to be assigned into any pair of
corresponding groups, they will never be evaluated and thus can-
not be matched. For complex image transformations, like wide-
baseline viewpoint change, a big kl is required, while a small kl is
good enough for simple image transformations, like rotation and
scale changes. Simply choosing a relatively big kl, as we did in this
paper, is always safe, but the cost is that we need more time to
evaluate some pairs LSs repeatedly. In similar way, we set
parameter K ¼ 10, which is the number of adjacent V-junctions
we collect to apply the topological distribution constraint
(Section 3.1.3), when matching V-junctions.

All the ratio (proportion) thresholds are set as values ranging
from 0.5 to 0.8 in this paper. We use these thresholds to force
the majority of a group samples meet certain constraints. It is in
fact not that crucial how majority the inlier samples are. In other
word, it is not a big deal when we vary the values of these ratio
thresholds from 0.5 to 0.8.

Other tractable parameters we have not mentioned above were
all fixed in the similar ways. All these tractable parameters are rel-
atively easy to tune; we in fact did not change their values after
testing them in several image pairs.
8 Available in http://www.robots.ox.ac.uk/�vgg/research/affine/.
5.4.2. Intractable parameters
Different from tractable parameters discussed above, we found

the two parameters are hard to tune: w and dt . w determines how
adjacently two LSs lie that they are intersected to form a junction,
while dt constraints on the description vector distances of V-
junction correspondences.

A bigger w would result in more V-junctions, and consequently
more V-junction matches. However, excessive V-junctions, espe-
cially when many of them cannot find correspondences in the
other group of V-junctions, hamper the matching since more inter-
ferences are introduced. Besides, both more computation time and
memory are required to match them. We adopted the strategy
introduced by Mikolajczyk et al. (2005) to select a proper value
for w by calculating the repeatability (a measure reflects the capa-
bility of a local region detector in extracting repeatable local
regions in images to be matched) of extracted local regions for
V-junctions from images. The famous local region detection and
description datasets,8 graffiti, leuven, boat, bikes and ubc, were
employed for experiments. We sampled w from 5 to 30 at the step
of 5. With every w, we calculated the repeatability scores of the
extracted local regions in the first image and all the rest images in
each of the above five datasets, and computed the average repeata-
bility. The change of the average repeatability w.r.t. w is shown in
Fig. 15(a). We can observe from this figure that the curve increases
when w is less than 20, and is stable until w is bigger than 25, where
the curve begins to drop. Thus, both 20 and 25 are proper values for
w. To obtain less junctions and reduce computation time, w ¼ 20
was selected.

dt is the threshold for the description vector distance of
V-junction correspondences. We had expected it to be very hard
to tune. Surprisingly, we later found it is not that intractable and
a reasonable fluctuations of its value do not cause big changes of
the final LS matching results, except on images with great scale
changes. The reason behind the tractability of dt is that we only
need to obtain some initial V-junction matches through evaluating
the description vectors of V-junctions from two images to be
matched. We do not need to maximize the match numbers and
the accuracies because we will subsequently refine the initial V-
junction matches under the guidance of epipolar line constraint
and the topological distribution constraint. This refinement proce-
dure would find back the missing V-junction matches due to a non-
optimal threshold value dt . So, a value of dt is acceptable so long as

http://www.robots.ox.ac.uk/<ucode type=
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Fig. 15. Parameter tuning. (Left): The changes of the average repeatability with different values of parameter w. (Right): The changes of F-Measure w.r.t. the threshold for
description vector distance.
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it can result in a sufficient portion of correct V-junction matches
that are able to be used to correctly estimate the epipolar geometry
between two images. However, the tractability of dt is not applica-
ble to images with great scale changes. This is because our LS
matcher is not so powerful to match LS from images with great
scale changes. If dt is not set as a fairly good value, our LS matcher
might not be able to find a sufficient proportion of correct
V-junction matches that enable a robust fundamental matrix
estimation.

Based on the above observations, instead of setting dt as the sta-
tistically optimal value after experimenting on a large set of
images, we simply set dt as the value that can bring in the best
matching performance on images with scale change. The first
and last images in the above-mentioned dataset boat, were utilized
for this purpose. The extremely great scale change between the
two images benefits us to select a proper value for dt . Besides,
the known global homography between the two images can help
access the correctness of the obtained V-junction matches auto-
matically and reliably. F-Measure of the obtained V-junction
matches w.r.t. different values of dt is shown Fig. 15(b). We can
see that F-Measure reaches the maximum when dt is set as 0.4.
Therefore, dt ¼ 0:4 was adopted in the algorithm. An interesting
observation from Fig. 15(b) is that when dt is set to be greater than
0.7, F-Measure remains unchanged. This is because no more new
matches, no matter correct or incorrect ones, can be added with
a threshold greater than 0.7. Remember that when matching
V-junctions, before evaluating description vector distances, we
prefilter candidate matches by the cross angle difference con-
straint. It is this constraint that stops the increase of the matches.
6. Conclusions

We have presented in this paper a new system for 3D recon-
struction based on LSs on images. The proposed LS matching algo-
rithm and 3D LS reconstruction algorithm both utilize the two
coplanar cues of image LSs that indicate their coplanarity in space:
adjacent image LSs are coplanar in space in a high possibility, and
corresponding image LSs shall be related by the same planar
homography if they are coplanar in space. Based on these two cues,
the proposed LS matching algorithm significantly improves the
efficiency of existing methods through matching the V-junctions
of adjacent LSs by extracting for each V-junction a scale and affine
invariant local region. The 3D LS reconstruction method solves the
ambiguities in 3D LS reconstruction through LS match grouping,
space plane estimation and image LS back-projection. A Markov
Random Field (MRF) based strategy is proposed to help more reli-
able LS match clustering. The benefit of the proposed 3D LS recon-
struction algorithm is that it can use a small number of images to
generate complete and detailed scene models.
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